Differential Models, Numerical Simulations and Applications
| Differential Models, Numerical Simulations and Applications |
| Autore | Bretti Gabriella |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (240 p.) |
| Soggetto topico |
Mathematics & science
Research & information: general |
| Soggetto non controllato |
aggregation equation
Allee effect applied mathematics asymptotic-preserving biaxial experiment Caputo fractional derivative cell migration Cellular Potts model computational mathematics conservation laws creeping cross-power spectrum differential and integro-differential models differential equations existence and stability Exponential Rosenbrock-Euler feedback stabilization finite volume scheme follow-the-leader model functional connectivity fundamental diagram gap analysis Hopf bifurcation hypoelliptic operators implicit schemes information theory input-to-state stability inverse problems kinetic Fokker-Planck equation lane discipline langevin equation LWR model macroscopic models magnetoencephalography mathematical biology Mean Field Games system MEG microchannel device microfluidic chip multi-phase models multivariate stochastic processes mutual information networks non-standard integrators nonlocal velocity nucleus deformation numerical approximations numerical methods numerical stability optimal design phase transition regularization theory relaxation limit RothC scalar conservation law seepage soft tissue mechanics soil organic carbon spectral complexity traffic data Volterra integral equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557897703321 |
Bretti Gabriella
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hypoelliptic Laplacian and orbital integrals [[electronic resource] /] / Jean-Michel Bismut
| Hypoelliptic Laplacian and orbital integrals [[electronic resource] /] / Jean-Michel Bismut |
| Autore | Bismut Jean-Michel |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, : Princeton University Press, 2011 |
| Descrizione fisica | 1 online resource (320 p.) |
| Disciplina | 515.7242 |
| Collana | Annals of mathematics studies |
| Soggetto topico |
Differential equations, Hypoelliptic
Laplacian operator Definite integrals Orbit method |
| Soggetto genere / forma | Electronic books. |
| Soggetto non controllato |
Bianchi identity
Brownian motion Casimir operator Clifford algebras Clifford variables Dirac operator Euclidean vector space Feynman-Kac formula Gaussian integral Gaussian type estimates Heisenberg algebras Kostant Leftschetz formula Littlewood-Paley decomposition Malliavin calculus Pontryagin maximum principle Selberg's trace formula Sobolev spaces Toponogov's theorem Witten complex action functional complexification conjugations convergence convexity de Rham complex displacement function distance function elliptic Laplacian elliptic orbital integrals fixed point formulas flat bundle general kernels general orbital integrals geodesic flow geodesics harmonic oscillator heat kernel heat kernels heat operators hypoelliptic Laplacian hypoelliptic deformation hypoelliptic heat kernel hypoelliptic heat kernels hypoelliptic operators hypoelliptic orbital integrals index formulas index theory infinite dimensional orbital integrals keat kernels local index theory locally symmetric space matrix part model operator nondegeneracy orbifolds orbital integrals parallel transport trivialization probabilistic construction pseudodistances quantitative estimates quartic term real vector space refined estimates rescaled heat kernel resolvents return map rough estimates scalar heat kernel scalar heat kernels scalar hypoelliptic Laplacian scalar hypoelliptic heat kernels scalar hypoelliptic operator scalar part semisimple orbital integrals smooth kernels standard elliptic heat kernel supertraces symmetric space symplectic vector space trace formula unbounded operators uniform bounds uniform estimates variational problems vector bundles wave equation wave kernel wave operator |
| ISBN |
1-283-16387-X
9786613163875 1-4008-4057-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Acknowledgments -- Introduction -- Chapter One. Clifford and Heisenberg algebras -- Chapter Two. The hypoelliptic Laplacian on X = G/K -- Chapter Three. The displacement function and the return map -- Chapter Four. Elliptic and hypoelliptic orbital integrals -- Chapter Five. Evaluation of supertraces for a model operator -- Chapter Six. A formula for semisimple orbital integrals -- Chapter Seven. An application to local index theory -- Chapter Eight. The case where [k (γ) ; p0] = 0 -- Chapter Nine. A proof of the main identity -- Chapter Ten. The action functional and the harmonic oscillator -- Chapter Eleven. The analysis of the hypoelliptic Laplacian -- Chapter Twelve. Rough estimates on the scalar heat kernel -- Chapter Thirteen. Refined estimates on the scalar heat kernel for bounded b -- Chapter Fourteen. The heat kernel qXb;t for bounded b -- Chapter Fifteen. The heat kernel qXb;t for b large -- Bibliography -- Subject Index -- Index of Notation |
| Record Nr. | UNINA-9910456831103321 |
Bismut Jean-Michel
|
||
| Princeton, : Princeton University Press, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hypoelliptic Laplacian and orbital integrals [[electronic resource] /] / Jean-Michel Bismut
| Hypoelliptic Laplacian and orbital integrals [[electronic resource] /] / Jean-Michel Bismut |
| Autore | Bismut Jean-Michel |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, : Princeton University Press, 2011 |
| Descrizione fisica | 1 online resource (320 p.) |
| Disciplina | 515.7242 |
| Collana | Annals of mathematics studies |
| Soggetto topico |
Differential equations, Hypoelliptic
Laplacian operator Definite integrals Orbit method |
| Soggetto non controllato |
Bianchi identity
Brownian motion Casimir operator Clifford algebras Clifford variables Dirac operator Euclidean vector space Feynman-Kac formula Gaussian integral Gaussian type estimates Heisenberg algebras Kostant Leftschetz formula Littlewood-Paley decomposition Malliavin calculus Pontryagin maximum principle Selberg's trace formula Sobolev spaces Toponogov's theorem Witten complex action functional complexification conjugations convergence convexity de Rham complex displacement function distance function elliptic Laplacian elliptic orbital integrals fixed point formulas flat bundle general kernels general orbital integrals geodesic flow geodesics harmonic oscillator heat kernel heat kernels heat operators hypoelliptic Laplacian hypoelliptic deformation hypoelliptic heat kernel hypoelliptic heat kernels hypoelliptic operators hypoelliptic orbital integrals index formulas index theory infinite dimensional orbital integrals keat kernels local index theory locally symmetric space matrix part model operator nondegeneracy orbifolds orbital integrals parallel transport trivialization probabilistic construction pseudodistances quantitative estimates quartic term real vector space refined estimates rescaled heat kernel resolvents return map rough estimates scalar heat kernel scalar heat kernels scalar hypoelliptic Laplacian scalar hypoelliptic heat kernels scalar hypoelliptic operator scalar part semisimple orbital integrals smooth kernels standard elliptic heat kernel supertraces symmetric space symplectic vector space trace formula unbounded operators uniform bounds uniform estimates variational problems vector bundles wave equation wave kernel wave operator |
| ISBN |
1-283-16387-X
9786613163875 1-4008-4057-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Acknowledgments -- Introduction -- Chapter One. Clifford and Heisenberg algebras -- Chapter Two. The hypoelliptic Laplacian on X = G/K -- Chapter Three. The displacement function and the return map -- Chapter Four. Elliptic and hypoelliptic orbital integrals -- Chapter Five. Evaluation of supertraces for a model operator -- Chapter Six. A formula for semisimple orbital integrals -- Chapter Seven. An application to local index theory -- Chapter Eight. The case where [k (γ) ; p0] = 0 -- Chapter Nine. A proof of the main identity -- Chapter Ten. The action functional and the harmonic oscillator -- Chapter Eleven. The analysis of the hypoelliptic Laplacian -- Chapter Twelve. Rough estimates on the scalar heat kernel -- Chapter Thirteen. Refined estimates on the scalar heat kernel for bounded b -- Chapter Fourteen. The heat kernel qXb;t for bounded b -- Chapter Fifteen. The heat kernel qXb;t for b large -- Bibliography -- Subject Index -- Index of Notation |
| Record Nr. | UNINA-9910781482503321 |
Bismut Jean-Michel
|
||
| Princeton, : Princeton University Press, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||