top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Artificial Intelligence: Models, Optimization, and Machine Learning
Advances in Artificial Intelligence: Models, Optimization, and Machine Learning
Autore Leon Florin
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (362 p.)
Soggetto topico Mathematics and Science
Research and information: general
Soggetto non controllato NET framework
adaptive sampling
agent algorithms
agent-based systems
animal-inspired
applied machine learning
approximate differential optimization
autonomous driving
class imbalance
classification
classification and regression
combinatorics
computational complexity
data mining
deep learning
deep neural networks
DeepFKTNet
defect classification
distance metrics
distributed W-learning
dynamic programming algorithm
engineering informatics
ensemble model
evolutionary algorithm
exploitation
exploration
free radical polymerization
gender-based violence in Mexico
generative adversarial networks
graph neural network
hot rolled strip steel
hyperparameters
image classification
inference
instance-based learning
intelligent transport systems
interoperability
k-nearest neighbor
knockout tournament
large margin nearest neighbor regression
machine learning
metaheuristics
multi-agent framework
multi-agent systems
multiple point hill climbing
multisensory fingerprint
n/a
object tracking
optimization
plastic bottle
prototypes
reinforcement learning
simulations
software design
spatial-temporal variable speed limit
stochastic methods
surface defects
traffic control
trajectory prediction
transfer learning
twitter messages
urban motorways
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Advances in Artificial Intelligence
Record Nr. UNINA-9910580212403321
Leon Florin  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Approximate Bayesian Inference
Approximate Bayesian Inference
Autore Alquier Pierre
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (508 p.)
Soggetto topico Mathematics and Science
Research and information: general
Soggetto non controllato approximate Bayesian computation
Approximate Bayesian Computation
approximate Bayesian computation (ABC)
Bayesian inference
Bayesian sampling
Bayesian statistics
Bethe free energy
bifurcation
complex systems
control variates
data imputation
data streams
deep learning
differential evolution
differential privacy (DP)
discrete state space
dynamical systems
Edward-Sokal coupling
entropy
ergodicity
expectation-propagation
factor graphs
fixed-form variational Bayes
Gaussian
generalisation bounds
Gibbs posterior
gradient descent
greedy algorithm
Hamilton Monte Carlo
hyperparameters
integrated nested laplace approximation
Kullback-Leibler divergence
Langevin dynamics
Langevin Monte Carlo
Laplace approximations
machine learning
Markov chain
Markov chain Monte Carlo
Markov Chain Monte Carlo
Markov kernels
MCMC
MCMC-SAEM
mean-field
message passing
meta-learning
Monte Carlo integration
network modeling
network variability
neural networks
no free lunch theorems
non-reversible dynamics
online learning
online optimization
PAC-Bayes
PAC-Bayes theory
particle flow
principal curves
priors
probably approximately correct
regret bounds
Riemann Manifold Hamiltonian Monte Carlo
robustness
sequential learning
sequential Monte Carlo
Sequential Monte Carlo
sleeping experts
sparse vector technique (SVT)
statistical learning theory
statistical mechanics
Stiefel manifold
stochastic gradients
stochastic volatility
thinning
variable flow
variational approximations
variational Bayes
variational free energy
variational inference
variational message passing
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576874903321
Alquier Pierre  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical Modeling in Civil and Mining Geotechnical Engineering
Numerical Modeling in Civil and Mining Geotechnical Engineering
Autore Li Li
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (300 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato near-surface thick deposit
surface subsidence
numerical simulation
unmanned aerial survey
accurate model
railway ballast fouling
ballast degradation
micro-mechanical parameters
shear strength
large diameter bored pile
hyperparameters
supervised machine learning
finite element method
parametric study
load transfer
failure mechanism
geothermal heat exchangers
permafrost
thaw settlement
sustainability
embedded beam elements
finite element
mesh sensitivity
soil-structure interaction
deep foundation
3D modelling
fluid fine tailings
dewatering
modelling
seasonal weathering
freeze-thaw
evaporation
mining backfill
compressibility
constitutive models
numerical modeling
plasticity
critical state soil model
modified Cam Clay model
model normalization
precomputation
incompatibility
rock
plastic deformation
goaf-side entry
stability of surrounding rock
pillar size optimization
confined water
paste filling mining
filling step
advancing distance
floor failure
tailings dam
impacting force
kinetic energy
smoothed particle hydrodynamics (SPH)
3D nonlinear yield criterion
elastoplastic model
circular opening
backfill
FLAC3D
pore water pressure
hydraulic conductivity
alternative method
numerical analyses
unsaturated soil
ISBN 3-0365-5442-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910674391503321
Li Li  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui