Metalearning : Applications to Automated Machine Learning and Data Mining |
Autore | Brazdil Pavel |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Cham, : Springer Nature, 2022 |
Descrizione fisica | 1 online resource (349 pages) |
Disciplina | 006.31 |
Altri autori (Persone) |
van RijnJan N
SoaresCarlos VanschorenJoaquin |
Collana | Cognitive Technologies |
Soggetto topico |
Artificial intelligence
Data mining Machine learning |
Soggetto non controllato |
Metalearning
Automating Machine Learning (AutoML) Machine Learning Artificial Intelligence algorithm selection algorithm recommendation algorithm configuration hyperparameter optimization automating the workflow/pipeline design metalearning in ensemble construction metalearning in deep neural networks transfer learning algorithm recommendation for data streams automating data science Open Access |
ISBN | 3-030-67024-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996464544803316 |
Brazdil Pavel
![]() |
||
Cham, : Springer Nature, 2022 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Metalearning : Applications to Automated Machine Learning and Data Mining |
Autore | Brazdil Pavel |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Cham, : Springer Nature, 2022 |
Descrizione fisica | 1 online resource (349 pages) |
Disciplina | 006.31 |
Altri autori (Persone) |
van RijnJan N
SoaresCarlos VanschorenJoaquin |
Collana | Cognitive Technologies |
Soggetto topico |
Artificial intelligence
Data mining Machine learning Aprenentatge automàtic Mineria de dades |
Soggetto genere / forma | Llibres electrònics |
Soggetto non controllato |
Metalearning
Automating Machine Learning (AutoML) Machine Learning Artificial Intelligence algorithm selection algorithm recommendation algorithm configuration hyperparameter optimization automating the workflow/pipeline design metalearning in ensemble construction metalearning in deep neural networks transfer learning algorithm recommendation for data streams automating data science Open Access |
ISBN | 3-030-67024-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910548277503321 |
Brazdil Pavel
![]() |
||
Cham, : Springer Nature, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Remote Sensing for Precision Nitrogen Management |
Autore | Miao Yuxin |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (602 p.) |
Soggetto topico |
Technology: general issues
History of engineering & technology Environmental science, engineering & technology |
Soggetto non controllato |
UAS
multiple sensors vegetation index leaf nitrogen accumulation plant nitrogen accumulation pasture quality airborne hyperspectral imaging random forest regression sun-induced chlorophyll fluorescence (SIF) SIF yield indices upward downward leaf nitrogen concentration (LNC) wheat (Triticum aestivum L.) laser-induced fluorescence leaf nitrogen concentration back-propagation neural network principal component analysis fluorescence characteristics canopy nitrogen density radiative transfer model hyperspectral winter wheat flooded rice pig slurry aerial remote sensing vegetation indices N recommendation approach Mediterranean conditions nitrogen vertical distribution plant geometry remote sensing maize UAV multispectral imagery LNC non-parametric regression red-edge NDRE dynamic change model sigmoid curve grain yield prediction leaf chlorophyll content red-edge reflectance spectral index precision N fertilization chlorophyll meter NDVI NNI canopy reflectance sensing N mineralization farmyard manures Triticum aestivum discrete wavelet transform partial least squares hyper-spectra rice nitrogen management reflectance index multiple variable linear regression Lasso model Multiplex®3 sensor nitrogen balance index nitrogen nutrition index nitrogen status diagnosis precision nitrogen management terrestrial laser scanning spectrometer plant height biomass nitrogen concentration precision agriculture unmanned aerial vehicle (UAV) digital camera leaf chlorophyll concentration portable chlorophyll meter crop PROSPECT-D sensitivity analysis UAV multispectral imagery spectral vegetation indices machine learning plant nutrition canopy spectrum non-destructive nitrogen status diagnosis drone multispectral camera SPAD smartphone photography fixed-wing UAV remote sensing random forest canopy reflectance crop N status Capsicum annuum proximal optical sensors Dualex sensor leaf position proximal sensing cross-validation feature selection hyperparameter tuning image processing image segmentation nitrogen fertilizer recommendation supervised regression RapidSCAN sensor nitrogen recommendation algorithm in-season nitrogen management nitrogen use efficiency yield potential yield responsiveness standard normal variate (SNV) continuous wavelet transform (CWT) wavelet features optimization competitive adaptive reweighted sampling (CARS) partial least square (PLS) grapevine hyperparameter optimization multispectral imaging precision viticulture RGB multispectral coverage adjusted spectral index vegetation coverage random frog algorithm active canopy sensing integrated sensing system discrete NIR spectral band data soil total nitrogen concentration moisture absorption correction index particle size correction index coupled elimination |
ISBN | 3-0365-5710-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910637794503321 |
Miao Yuxin
![]() |
||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Sustainable Agriculture and Advances of Remote Sensing (Volume 1) |
Autore | Paraforos Dimitrios |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (324 p.) |
Soggetto topico |
Research & information: general
Geography |
Soggetto non controllato |
geographic information system (GIS)
pocket beaches coastal management Interreg climate change remote sensing drone Sicily Malta Gozo Comino systematic literature review anomaly intrusion detection deep learning IoT resource constraint IDS evapotranspiration penman-monteith equation artificial neural network canopy conductance Ziz basin water quality satellite image analysis modeling approach nitrate dissolved oxygen chlorophyll a time series analysis environmental monitoring water extraction modified normalized difference water index (MNDWI) machine learning algorithm hyperspectral proximal sensing panicle initiation normalized difference vegetation index (NDVI) green ring internode-elongation Sentinel 1 and 2 Copernicus Sentinels crop classification food security agricultural monitoring data analysis SAR random forest 3D bale wrapping method equal bale dimensions mathematical model minimal film consumption optimal bale dimensions round bales Sentinel-2 SVM RF Boufakrane River watershed irrigation requirements water resources sustainable land use agriculture invasive plants precision agriculture rice farming site-specific weed management nitrogen prediction 1D convolution neural networks cucumber crop yield improvement mango leaf CCA vein pattern leaf disease cubic SVM chlorophyll-a concentration transfer learning overfitting data augmentation guava disease plant disease detection crops diseases entropy features fusion machine learning object-based classification density estimation histogram land use crop fields soil tillage data fusion multispectral sensor probe temperature profile forest roads simulation autonomous robots smart agriculture environmental protection photogrammetry path planning internet of things modeling convolutional neural networks machine vision computer vision modular robot selective spraying vision-based crop and weed detection Faster R-CNN YOLOv5 band selection CNN NDVI hyperspectral imaging crops urban flood Sentinel-1a Synthetic Aperture Radar (SAR) 3D Convolutional Neural Network multi-temporal data land use classification GIS Coatzacoalcos algorithms clustering pest control site-specific virtual pests rice plant weed hyperspectral imagery sustainable agriculture green technologies Internet of Things natural resources sustainable environment IoT ecosystem hyperspectral remoting sensing crop mapping image classification deep transfer learning hyperparameter optimization metaheuristic soil attribute ordinary Kriging rational sampling numbers spatial heterogeneity sampling soil pH spatial variation ordinary kriging Land Use/Land Cover LISS-III Landsat Vision Transformer Bidirectional long-short term memory Google Earth Engine Explainable Artificial Intelligence |
ISBN | 3-0365-5338-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Sustainable Agriculture and Advances of Remote Sensing |
Record Nr. | UNINA-9910619464703321 |
Paraforos Dimitrios
![]() |
||
MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Sustainable Agriculture and Advances of Remote Sensing (Volume 2) |
Autore | Paraforos Dimitrios |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (322 p.) |
Soggetto topico |
Research & information: general
Geography |
Soggetto non controllato |
geographic information system (GIS)
pocket beaches coastal management Interreg climate change remote sensing drone Sicily Malta Gozo Comino systematic literature review anomaly intrusion detection deep learning IoT resource constraint IDS evapotranspiration penman-monteith equation artificial neural network canopy conductance Ziz basin water quality satellite image analysis modeling approach nitrate dissolved oxygen chlorophyll a time series analysis environmental monitoring water extraction modified normalized difference water index (MNDWI) machine learning algorithm hyperspectral proximal sensing panicle initiation normalized difference vegetation index (NDVI) green ring internode-elongation Sentinel 1 and 2 Copernicus Sentinels crop classification food security agricultural monitoring data analysis SAR random forest 3D bale wrapping method equal bale dimensions mathematical model minimal film consumption optimal bale dimensions round bales Sentinel-2 SVM RF Boufakrane River watershed irrigation requirements water resources sustainable land use agriculture invasive plants precision agriculture rice farming site-specific weed management nitrogen prediction 1D convolution neural networks cucumber crop yield improvement mango leaf CCA vein pattern leaf disease cubic SVM chlorophyll-a concentration transfer learning overfitting data augmentation guava disease plant disease detection crops diseases entropy features fusion machine learning object-based classification density estimation histogram land use crop fields soil tillage data fusion multispectral sensor probe temperature profile forest roads simulation autonomous robots smart agriculture environmental protection photogrammetry path planning internet of things modeling convolutional neural networks machine vision computer vision modular robot selective spraying vision-based crop and weed detection Faster R-CNN YOLOv5 band selection CNN NDVI hyperspectral imaging crops urban flood Sentinel-1a Synthetic Aperture Radar (SAR) 3D Convolutional Neural Network multi-temporal data land use classification GIS Coatzacoalcos algorithms clustering pest control site-specific virtual pests rice plant weed hyperspectral imagery sustainable agriculture green technologies Internet of Things natural resources sustainable environment IoT ecosystem hyperspectral remoting sensing crop mapping image classification deep transfer learning hyperparameter optimization metaheuristic soil attribute ordinary Kriging rational sampling numbers spatial heterogeneity sampling soil pH spatial variation ordinary kriging Land Use/Land Cover LISS-III Landsat Vision Transformer Bidirectional long-short term memory Google Earth Engine Explainable Artificial Intelligence |
ISBN | 3-0365-5336-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Sustainable Agriculture and Advances of Remote Sensing |
Record Nr. | UNINA-9910619464803321 |
Paraforos Dimitrios
![]() |
||
MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|