top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Application of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) in East Asia
Application of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) in East Asia
Autore Meng Xianyong
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (384 p.)
Soggetto non controllato sensitivity analysis
non-point source pollution models
reservoirs
operation rule
East Asia
climate variability
Qinghai-Tibet Plateau (TP)
potential evapotranspiration
precipitation
capacity distribution
GLUE
soil temperature
land use change
JBR
CFSR
Jinsha River Basin
impact
runoff
CMADS
hydrological modeling
aggregated reservoir
reanalysis products
Lijiang River
spatio-temporal
uncertainty
total nitrogen
Han River
streamflow simulation
meteorological
CMADS-ST
Erhai Lake Basin
uncertainty analysis
Biliuhe reservoir
hydrological
bayesian model averaging
blue and green water flows
SUFI-2
TMPA-3B42V7
statistical analysis
satellite-derived rainfall
streamflow
satellite-based products
Xiang River basin
SWAT hydrological simulation
PERSIANN-CDR
hydrological processes
SUFI2
CMADS dataset
ParaSol
hydrological modelling
accumulation
meteorological input uncertainty
soil moisture content
Yellow River
SWAT
Noah LSM-HMS
sediment yield
Yalong River
TRMM
Penman-Monteith
IMERG
PERSIANN
hydrological elements
freeze–thaw period
land-use change
parameter sensitivity
China
reservoir parameters
soil moisture
sloping black soil farmland
hydrological model
SWAT model
hydrologic model
ISBN 3-03921-236-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Application of the China Meteorological Assimilation Driving Datasets for the SWAT Model
Record Nr. UNINA-9910346839103321
Meng Xianyong  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Flood Forecasting Using Machine Learning Methods
Flood Forecasting Using Machine Learning Methods
Autore Chang Fi-John
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (376 p.)
Soggetto non controllato natural hazards &
artificial neural network
flood routing
the Three Gorges Dam
backtracking search optimization algorithm (BSA)
lag analysis
artificial intelligence
classification and regression trees (CART)
decision tree
real-time
optimization
ensemble empirical mode decomposition (EEMD)
improved bat algorithm
convolutional neural networks
ANFIS
method of tracking energy differences (MTED)
adaptive neuro-fuzzy inference system (ANFIS)
recurrent nonlinear autoregressive with exogenous inputs (RNARX)
disasters
flood prediction
ANN-based models
flood inundation map
ensemble machine learning
flood forecast
sensitivity
hydrologic models
phase space reconstruction
water level forecast
data forward prediction
early flood warning systems
bees algorithm
random forest
uncertainty
soft computing
data science
hydrometeorology
LSTM
rating curve method
forecasting
superpixel
particle swarm optimization
high-resolution remote-sensing images
machine learning
support vector machine
Lower Yellow River
extreme event management
runoff series
empirical wavelet transform
Muskingum model
hydrograph predictions
bat algorithm
data scarce basins
Wilson flood
self-organizing map
big data
extreme learning machine (ELM)
hydroinformatics
nonlinear Muskingum model
invasive weed optimization
rainfall–runoff
flood forecasting
artificial neural networks
flash-flood
streamflow predictions
precipitation-runoff
the upper Yangtze River
survey
parameters
Haraz watershed
ANN
time series prediction
postprocessing
flood susceptibility modeling
rainfall-runoff
deep learning
database
LSTM network
ensemble technique
hybrid neural network
self-organizing map (SOM)
data assimilation
particle filter algorithm
monthly streamflow forecasting
Dongting Lake
machine learning methods
micro-model
stopping criteria
Google Maps
cultural algorithm
wolf pack algorithm
flood events
urban water bodies
Karahan flood
St. Venant equations
hybrid &
hydrologic model
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346688303321
Chang Fi-John  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Integrated Water Resources Research : Advancements in Understanding to Improve Future Sustainability
Integrated Water Resources Research : Advancements in Understanding to Improve Future Sustainability
Autore Hubbart Jason A
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (364 p.)
Soggetto topico Research & information: general
Soggetto non controllato physical habitat
aquatic ecology
stream health
environmental flows
land use
hydrology
hydroecology
ecohydrology
climate change
Appalachia
reforestation
land use-land cover
land-atmosphere coupling
water quality
environmental perceptions
human dimensions
spatial models
socioeconomics
urban watershed management
municipal watershed
water quality impairment
collaborative adaptive management
water resources
urban watersheds
endocrine disrupting chemical
opioid
pathway analysis
ontology
metabolomics
decision-making
logit regression
farmer perceptions
social networks
public funds
water conservation adoption
good governance
sanitation
sustainability
water supply
water-saving agriculture
Chinese provincial input efficiency
three-stage DEA model
environmental variables
Boufakrane river watershed
remote sensing
LULCC
water balances
vulnerability
total dissolved solids
drinking water
Appalachian Mountains
streamflow sensitivity
water security
water balance partitioning
Budyko
Escherichia coli
Suspended particulate matter
Water quality
Land use practices
Watershed management
basin
hydrologic model
reaeration rates
stream metabolism
watershed
physicochemistry
land use practices
experimental watershed
suspended particulate matter
stream water temperature
watershed management
bacteria
land-use practices
environmental persistence
saturated hydraulic conductivity
pedotransfer function
model validation
Chesapeake Bay Watershed
experimental watershed study
human dimensions of water
watershed modeling
hydrological modeling
water pollutants
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Integrated Water Resources Research
Record Nr. UNINA-9910557598803321
Hubbart Jason A  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Autore Kisi Ozgur
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (238 p.)
Soggetto topico Research & information: general
Soggetto non controllato groundwater
artificial intelligence
hydrologic model
groundwater level prediction
machine learning
principal component analysis
spatiotemporal variation
uncertainty analysis
hydroinformatics
support vector machine
big data
artificial neural network
nitrogen compound
nitrogen prediction
prediction models
neural network
non-linear modeling
PACF
WANN
SVM-LF
SVM-RF
Govindpur
streamflow forecasting
Bayesian model averaging
multivariate adaptive regression spline
M5 model tree
Kernel extreme learning machines
South Korea
uncertainty
sustainability
prediction intervals
ungauged basin
streamflow simulation
satellite precipitation
atmospheric reanalysis
ensemble modeling
additive regression
bagging
dagging
random subspace
rotation forest
flood routing
Muskingum method
extension principle
calibration
fuzzy sets and systems
particle swarm optimization
EEFlux
irrigation performance
CWP
water conservation
NDVI
water resources
Daymet V3
Google Earth Engine
improved extreme learning machine (IELM)
sensitivity analysis
shortwave radiation flux density
sustainable development
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557448103321
Kisi Ozgur  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Soil-Water Conservation, Erosion, and Landslide
Soil-Water Conservation, Erosion, and Landslide
Autore Chen Su-Chin
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (392 p.)
Soggetto topico Technology: general issues
Environmental science, engineering & technology
Soggetto non controllato landslide
image classification
spectrum similarity analysis
extreme rainfall-induced landslide susceptibility model
landslide ratio-based logistic regression
landslide evolution
Typhoon Morakot
Taiwan
vegetation community
vegetation importance value
root system
soil erosion
grey correlation analysis
sediment yield
RUSLE
Lancang-Mekong River basin
rainfall threshold
landslide probability model
debris flow
Zechawa Gully
mitigation countermeasures
Jiuzhaigou Valley
water erosion
susceptibility
Gaussian process
climate change
radial basis function kernel
weighted subspace random forest
extreme events
extreme weather
naive Bayes
feature selection
machine learning
hydrologic model
simulated annealing
earth system science
PSED Model
loess
ICU
static liquefaction
mechanical behavior
pore structure
alpine swamp meadow
alpine meadow
degradation of riparian vegetation
root distribution
tensile strength
tensile crack
soil management
land cover changes
Syria
hillslopes
gully erosion
vegetation restoration
soil erodibility
land use
bridge pier
overfall
scour
landform change impact on pier
shallow water equations
wet-dry front
outburst flood
TVD-scheme
MUSCL-Hancock method
laboratory model test
extreme rainfall
rill erosion
shallow landslides
deep lip surface
safety factor
rainfall erosivity factor
USLE R
Deep Neural Network
tree ring
dendrogeomorphology
landslide activity
deciduous broadleaved tree
Shirakami Mountains
spatiotemporal cluster analysis
landslide hotspots
dam breach
seepage
overtopping
seismic signal
flume test
breach model
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566467403321
Chen Su-Chin  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui