Bio-Based Polymers for Engineered Green Materials
| Bio-Based Polymers for Engineered Green Materials |
| Autore | Schnabel Thomas |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (568 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
adsorption
adsorption capacity alginate sponge alkali lignin anionic surfactants Anti-bacterial silver nanoparticle antifouling Artemisia vulgaris asphalt rubber autoxidation bacterial cellulose benzoyl cellulose bio-asphalt bio-based Bio-based foams bio-inspired interfaces bio-nanocomposites biocomposite Bioflex biomass resources bioplastics biopolymers cationic dyes cellulose cellulose nanocrystals cellulose nanofibers cement chemical composition chitosan compatibility composites copper coating corn starch cost crosslinked microparticles delignification dense structure differential scanning calorimetry dimensional stability dimer acid dissolution electrical resistance electroless deposition electrospinning emulsion-solvent evaporation method endothermic effect enzymatic saccharification Escherichia coli extrusion-compounding feast-famine fiber-cement film films fractionation free-radical polymerization galactoglucomannan GC-MS graphene oxide H2O2 bleaching treatment Hatscheck process headspace solid phase microextraction heat treatment heavy metals hemicellulose HSQC-NMR humidity sensor hybrid composites hybrid nonisocyanate polyurethane hydrogel hydrotropic treatment imidazolium immobilized TEMPO ionic liquid iron chelation kaempferol kenaf fiber knotwood larixol latex state lignin lignin content lignin-carbohydrate complex lignin-containing cellulose nanofibrils lignocellulose lignocellulosic nanofibrils liquid natural rubber lyocell fiber mechanical degradation mechanical properties melt condensation membrane metal binding metal chloride methylene blue Microbial nutrient microcellulose fiber microencapsulated phase change material (MPCM) microstructure mixed microbial cultures mixing sequence n/a nanobiocomposites nanocellulose fibers nanocelluloses nanoclays natural fibers nuclear magnetic resonance one-pot synthesis ONP fibers orange waste osteoblast proliferation paper-based scaffolds Peptone PHA PHBV phenanthrene photodegradation physical property physicochemical properties pollutant adsorbents poly(lactic acid) poly(lactic acid) and composite films polycaprolactone polydopamine coating polyhydroxyalkanoates polylactic acid polylactic acid (PLA) polymeric composites polysaccharides porosity porous structure precipitation pulp fibers pyrene pyrolysis mechanism recycling resource recovery robust fiber network SAXS scanning electron microscope sensitivity silanization silkworm cocoons skincare Solanyl solution casting solvent- and catalyst-free Staphylococcus aureus stearoyl cellulose storage stability strain sensor structural plastics structure-property relationship surface modification tannin tannin polymer tannin-furanic foam taxifolin TEMPO oxidation thermal degradation thermal gravimetric analysis thermal properties thermal stability thermoplastic starch thermosetting polymers TiO2 anatase tissue engineering toughening transparent wood transport properties tung oil two-step lyophilization ultrafiltration unsaturated polyester resins UV light vibrational spectroscopy volatiles waste biomass wastewater treatments water resistance WAXS wood wood modification workability X-ray diffraction |
| ISBN | 3-03928-926-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910404081003321 |
Schnabel Thomas
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Deep Learning Applications with Practical Measured Results in Electronics Industries
| Deep Learning Applications with Practical Measured Results in Electronics Industries |
| Autore | Kung Hsu-Yang |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (272 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
A*
background model binary classification CNN compressed sensing computational intelligence content reconstruction convolutional network data fusion data partition deep learning digital shearography discrete wavelet transform dot grid target eye-tracking device faster region-based CNN forecasting foreign object GA gated recurrent unit generative adversarial network geometric errors geometric errors correction GSA-BP human computer interaction humidity sensor hyperspectral image classification image compression image inpainting image restoration imaging confocal microscope Imaging Confocal Microscope information measure instance segmentation intelligent surveillance intelligent tire manufacturing K-means clustering kinematic modelling lateral stage errors Least Squares method long short-term memory machine learning MCM uncertainty evaluation multiple constraints multiple linear regression multivariate temporal convolutional network multivariate time series forecasting neighborhood noise reduction network layer contribution neural audio caption neural networks neuro-fuzzy systems nonlinear optimization offshore wind optimization techniques oral evaluation recommender system reinforcement learning residual networks rigid body kinematics saliency information smart grid supervised learning tire bubble defects tire quality assessment trajectory planning transfer learning UAV underground mines unmanned aerial vehicle unsupervised learning update mechanism update occasion visual tracking |
| ISBN | 3-03928-864-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910404080403321 |
Kung Hsu-Yang
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Humidity Sensors : : Advances in Reliability, Calibration and Application / / Peter W. McCarthy, Zhuofu Liu, Vincenzo Cascioli
| Humidity Sensors : : Advances in Reliability, Calibration and Application / / Peter W. McCarthy, Zhuofu Liu, Vincenzo Cascioli |
| Autore | McCarthy Peter W |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (198 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
emissivity
transient response Trace moisture user interaction IDE SHT75 random shocks humidity sensor calibration points measurement uncertainty humidity porous materials building materials Monte Carlo method relative humidity capacitive sensors reliability model microwave resonator remote sensing body-seat interface low pressure moisture low temperature bio fuel three-dimensional graphene foams moisture measurement dual temperature-humidity sensor humidity sensors FD consumer grade weather stations CO2 fast response frequency domain dependent competing failure dielectric constant time domain reflectometry agriculture saturated salt solutions winter fire risk Mars in-situ measurements experimental simulation chambers paper mill capacitive sitting rate infrared radiant source calibration capacitive humidity sensors self-recovery carbon dioxide TDR ball SAW sensor Martian atmosphere surface acoustic wave permeation tube thermal impact SIDE surface soil water content PI |
| ISBN |
9783039211234
3039211234 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346660603321 |
McCarthy Peter W
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||