top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Autore Lytras Miltiadis
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (258 p.)
Soggetto non controllato artificial neural network
home energy management systems
conditional random fields
LR
ELR
energy disaggregation
artificial intelligence
genetic algorithm
decision tree
static young’s modulus
price
scheduling
self-adaptive differential evolution algorithm
Marsh funnel
energy
yield point
non-intrusive load monitoring
mud rheology
distributed genetic algorithm
MCP39F511
Jetson TX2
sustainable development
artificial neural networks
transient signature
load disaggregation
smart villages
ambient assisted living
smart cities
demand side management
smart city
CNN
wireless sensor networks
object detection
drill-in fluid
ERELM
sandstone reservoirs
RPN
deep learning
RELM
smart grids
multiple kernel learning
load
feature extraction
NILM
energy management
energy efficient coverage
insulator
Faster R-CNN
home energy management
smart grid
LSTM
smart metering
optimization algorithms
forecasting
plastic viscosity
machine learning
computational intelligence
policy making
support vector machine
internet of things
sensor network
nonintrusive load monitoring
demand response
ISBN 3-03928-890-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404078103321
Lytras Miltiadis  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forecasting and Risk Management Techniques for Electricity Markets
Forecasting and Risk Management Techniques for Electricity Markets
Autore Yamada Yuji
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (212 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato electricity markets
non-parametric regression
minimum variance hedge
spline basis functions
cyclic cubic spline
weather derivatives
distributed energy resources (DER)
P2P energy trading
cooperative mechanism
renewable energy
multi agent system
blockchain
cashflow management of electricity businesses
electricity derivatives and forwards
retailers and power producers
solar power and thermal energy
optimal hedging using nonparametric techniques
empirical simulations
peer-to-peer energy trading
distributed energy resources
microgrid
digital grid
bidding strategy
electricity price
electricity load
electricity price forecasting
wind energy
day-ahead market
intra-day market
balancing power market
peer to peer energy market
hardware control
demonstration experiment
home energy management systems
electric vehicles
bidding agent
electric vehicle
functional autoregressive model
functional principle component analysis
vector autoregressive model
functional final prediction error (FFPE)
naive method
P2P electricity market
market maker
liquidity
price fluctuation
artificial market simulation
ISBN 3-0365-5184-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619464203321
Yamada Yuji  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui