top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Autore Lytras Miltiadis
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (258 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato ambient assisted living
artificial intelligence
artificial neural network
artificial neural networks
CNN
computational intelligence
conditional random fields
decision tree
deep learning
demand response
demand side management
distributed genetic algorithm
drill-in fluid
ELR
energy
energy disaggregation
energy efficient coverage
energy management
ERELM
Faster R-CNN
feature extraction
forecasting
genetic algorithm
home energy management
home energy management systems
insulator
internet of things
Jetson TX2
load
load disaggregation
LR
LSTM
machine learning
Marsh funnel
MCP39F511
mud rheology
multiple kernel learning
NILM
non-intrusive load monitoring
nonintrusive load monitoring
object detection
optimization algorithms
plastic viscosity
policy making
price
RELM
RPN
sandstone reservoirs
scheduling
self-adaptive differential evolution algorithm
sensor network
smart cities
smart city
smart grid
smart grids
smart metering
smart villages
static young's modulus
support vector machine
sustainable development
transient signature
wireless sensor networks
yield point
ISBN 3-03928-890-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404078103321
Lytras Miltiadis  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forecasting and Risk Management Techniques for Electricity Markets
Forecasting and Risk Management Techniques for Electricity Markets
Autore Yamada Yuji
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (212 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato artificial market simulation
balancing power market
bidding agent
bidding strategy
blockchain
cashflow management of electricity businesses
cooperative mechanism
cyclic cubic spline
day-ahead market
demonstration experiment
digital grid
distributed energy resources
distributed energy resources (DER)
electric vehicle
electric vehicles
electricity derivatives and forwards
electricity load
electricity markets
electricity price
electricity price forecasting
empirical simulations
functional autoregressive model
functional final prediction error (FFPE)
functional principle component analysis
hardware control
home energy management systems
intra-day market
liquidity
market maker
microgrid
minimum variance hedge
multi agent system
n/a
naive method
non-parametric regression
optimal hedging using nonparametric techniques
P2P electricity market
P2P energy trading
peer to peer energy market
peer-to-peer energy trading
price fluctuation
renewable energy
retailers and power producers
solar power and thermal energy
spline basis functions
vector autoregressive model
weather derivatives
wind energy
ISBN 3-0365-5184-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619464203321
Yamada Yuji  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui