top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Process Monitoring for Industry 4.0
Advanced Process Monitoring for Industry 4.0
Autore Reis Marco S
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (288 p.)
Soggetto topico Technology: general issues
Soggetto non controllato artificial generation of variability
auto machine learning
classification
combustion
condition monitoring
construction industry
continuous casting
control chart pattern
convolutional neural network
curve resolution
data augmentation
data mining
data reconciliation
decision support systems
digital processing
discriminant analysis
disruption management
disruptions
expert systems
failure mode and effects analysis (FMEA)
failure mode effects analysis
fault detection
fault diagnosis
high-dimensional data
imbalanced data
Industry 4.0
latent variables models
load identification
membrane
monitoring
multi-mode model
multi-phase residual recursive model
multiscale
multivariate data analysis
n/a
neural networks
non-intrusive load monitoring
online
optical sensors
OPTICS
pasting process
PCA
plaster production
PLS
principal component analysis
process control
process image
process monitoring
quality control
quality prediction
real-time
risk priority number
rolling bearing
semiconductor manufacturing
signal detection
Six Sigma
spatial-temporal data
spectroscopy measurements
statistical process control
statistical process monitoring
time series classification
yield improvement
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557491503321
Reis Marco S  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Big Data Analytics and Information Science for Business and Biomedical Applications
Big Data Analytics and Information Science for Business and Biomedical Applications
Autore Ahmed S. Ejaz
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (246 p.)
Soggetto topico Humanities
Social interaction
Soggetto non controllato abdominal aortic aneurysm
ant colony system
asymptotic theory
bayesian spatial mixture model
causal and dilated convolutional neural networks
deep learning
DWD
EEG/MEG data
elastic net
emulation
ensembling
entropy-based robust EM
estimation consistency
feature fusion
feature representation
financial time series
generalized linear models
high dimension
high dimensional predictors
high dimensional time-series
high-dimensional
high-dimensional data
information complexity criteria
inverse problem
L2-consistency
Lasso
Medicare data
missingness mechanism
mixture regression
model selection
multicategory classification
nonlocal prior
nonparamteric boostrap
nuisance
penalty methods
post-selection inference
prediction
proximal algorithm
random subspaces
regularization
segmentation
sparse group lasso
sparse PCA
stepwise regression
strong selection consistency
text mining
trend analysis
unconventional likelihood
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557614803321
Ahmed S. Ejaz  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Big Data Analytics and Information Science for Business and Biomedical Applications II
Big Data Analytics and Information Science for Business and Biomedical Applications II
Autore Ahmed S. Ejaz
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (196 p.)
Soggetto topico Computer science
Information technology industries
Soggetto non controllato asymptotic bias and risk
bandwidth selection
Bayesian modeling
big data adaptation
brain network
cancer
causal structure learning
chest X-ray images
consistency
correlation
deep learning
dividend estimation
edge-preserving image denoising
FCI algorithm
fMRI
functional connectivity
functional predictor
functional principal component analysis
functional regression
gestational weight
high dimensionality
high-dimensional data
Human Connectome Project
image sequence
infant birth weight
joint modeling
jump regression analysis
LASSO estimation
linear mixed model
linear mixed-effects model
local smoothing
longitudinal data
lung diseases
maternal weight gain
mobile device
multicollinearity
network analysis
nonparametric regression
nonparametric testing
online health community
options markets
PC algorithm
pretest and shrinkage estimation
pretrained neural networks
ridge estimation
social support
sparse group regularization
spatio-temporal data
statistics
transfer learning
wearable device data
weighted least squares
ISBN 3-0365-5550-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637784003321
Ahmed S. Ejaz  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Advances and Applications of Machine Learning in Metal Forming Processes
Recent Advances and Applications of Machine Learning in Metal Forming Processes
Autore Prates Pedro
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (210 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Mining technology & engineering
Soggetto non controllato sheet metal forming
uncertainty analysis
metamodeling
machine learning
hot rolling strip
edge defects
intelligent recognition
convolutional neural networks
deep-drawing
kriging metamodeling
multi-objective optimization
FE (Finite Element) AutoForm robust analysis
defect prediction
mechanical properties prediction
high-dimensional data
feature selection
maximum information coefficient
complex network clustering
ring rolling
process energy estimation
metal forming
thermo-mechanical FEM analysis
artificial neural network
aluminum alloy
mechanical property
UTS
topological optimization
artificial neural networks (ANN)
machine learning (ML)
press-brake bending
air-bending
three-point bending test
sheet metal
buckling instability
oil canning
artificial intelligence
convolution neural network
hot rolled strip steel
defect classification
generative adversarial network
attention mechanism
deep learning
mechanical constitutive model
finite element analysis
plasticity
parameter identification
full-field measurements
ISBN 3-0365-5772-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637782503321
Prates Pedro  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui