top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Autore Attewell Paul A. <1949->
Pubbl/distr/stampa Oakland, California : , : University of California Press, , 2015
Descrizione fisica 1 online resource (265 p.)
Disciplina 006.3/12
Soggetto topico Social sciences - Data processing
Social sciences - Statistical methods
Data mining
Soggetto non controllato analyzing data
bayesian networks
big data
bootstrapping
business analytics
chaid
classification and regression trees
classification trees
confusion matrix
data analysis
data mining
data processing
data scholarship
data science
hardware for data mining
heteroscedasticity
naive bayes
partition trees
permutation tests
scholarly data
social science
social scientists
software for data mining
statistical methods
statistical modeling
studying data
text mining
vif regression
weka
ISBN 0-520-28098-9
0-520-96059-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- CONTENTS -- ACKNOWLEDGMENTS -- 1. WHAT IS DATA MINING? -- 2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH -- 3. SOME GENERAL STRATEGIES USED IN DATA MINING -- 4. IMPORTANT STAGES IN A DATA MINING PROJECT -- 5. PREPARING TRAINING AND TEST DATASETS -- 6. VARIABLE SELECTION TOOLS -- 7. CREATING NEW VARIABLES -- 8. EXTRACTING VARIABLES -- 9. CLASSIFIERS -- 10. CLASSIFICATION TREES -- 11. NEURAL NETWORKS -- 12. CLUSTERING -- 13. LATENT CLASS ANALYSIS AND MIXTURE MODELS -- 14. ASSOCIATION RULES -- CONCLUSION. Where Next? -- BIBLIOGRAPHY -- NOTES -- INDEX
Record Nr. UNINA-9910788152303321
Attewell Paul A. <1949->  
Oakland, California : , : University of California Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan
Autore Attewell Paul A. <1949->
Pubbl/distr/stampa Oakland, California : , : University of California Press, , 2015
Descrizione fisica 1 online resource (265 p.)
Disciplina 006.3/12
Soggetto topico Social sciences - Data processing
Social sciences - Statistical methods
Data mining
Soggetto non controllato analyzing data
bayesian networks
big data
bootstrapping
business analytics
chaid
classification and regression trees
classification trees
confusion matrix
data analysis
data mining
data processing
data scholarship
data science
hardware for data mining
heteroscedasticity
naive bayes
partition trees
permutation tests
scholarly data
social science
social scientists
software for data mining
statistical methods
statistical modeling
studying data
text mining
vif regression
weka
ISBN 0-520-28098-9
0-520-96059-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- CONTENTS -- ACKNOWLEDGMENTS -- 1. WHAT IS DATA MINING? -- 2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH -- 3. SOME GENERAL STRATEGIES USED IN DATA MINING -- 4. IMPORTANT STAGES IN A DATA MINING PROJECT -- 5. PREPARING TRAINING AND TEST DATASETS -- 6. VARIABLE SELECTION TOOLS -- 7. CREATING NEW VARIABLES -- 8. EXTRACTING VARIABLES -- 9. CLASSIFIERS -- 10. CLASSIFICATION TREES -- 11. NEURAL NETWORKS -- 12. CLUSTERING -- 13. LATENT CLASS ANALYSIS AND MIXTURE MODELS -- 14. ASSOCIATION RULES -- CONCLUSION. Where Next? -- BIBLIOGRAPHY -- NOTES -- INDEX
Record Nr. UNINA-9910814373503321
Attewell Paul A. <1949->  
Oakland, California : , : University of California Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sense and Respond : Industrial Applications of Smart Sensors in Cyber-Physical Systems
Sense and Respond : Industrial Applications of Smart Sensors in Cyber-Physical Systems
Autore Villalba-Diez Javier
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (168 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato application
approaches
artificial vision
asynchronous
conceptual framework
cramer rao lower bound
Cramér-Rao lower bound
data
deep learning
EEG sensors
genetic algorithms
geometric deep learning
heteroscedasticity
hyperboloids
IIoT
indoor air quality
industrial optical quality inspection
industry 4.0
Industry 4.0
IOTA tangle
LCA
lean management
localization
long-term monitoring benefits
low cost
LPS
manufacturing systems
multi-objective optimization
node distribution
occupational safety and health
problem-solving
project engineering
SDG 11
SDG 9
sensor failure
sensor networks
sensors
soft sensors
TDOA
tools
wireless sensor networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Sense and Respond
Record Nr. UNINA-9910566485903321
Villalba-Diez Javier  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...