top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics / Felix Fritzen, David Ryckelynck
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics / Felix Fritzen, David Ryckelynck
Autore Fritzen Felix
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (254 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato supervised machine learning
proper orthogonal decomposition (POD)
PGD compression
stabilization
nonlinear reduced order model
gappy POD
symplectic model order reduction
neural network
snapshot proper orthogonal decomposition
3D reconstruction
microstructure property linkage
nonlinear material behaviour
proper orthogonal decomposition
reduced basis
ECSW
geometric nonlinearity
POD
model order reduction
elasto-viscoplasticity
sampling
surrogate modeling
model reduction
enhanced POD
archive
modal analysis
low-rank approximation
computational homogenization
artificial neural networks
unsupervised machine learning
large strain
reduced-order model
proper generalised decomposition (PGD)
a priori enrichment
elastoviscoplastic behavior
error indicator
computational homogenisation
empirical cubature method
nonlinear structural mechanics
reduced integration domain
model order reduction (MOR)
structure preservation of symplecticity
heterogeneous data
reduced order modeling (ROM)
parameter-dependent model
data science
Hencky strain
dynamic extrapolation
tensor-train decomposition
hyper-reduction
empirical cubature
randomised SVD
machine learning
inverse problem plasticity
proper symplectic decomposition (PSD)
finite deformation
Hamiltonian system
DEIM
GNAT
ISBN 9783039214105
3039214101
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367759403321
Fritzen Felix  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Systems Analytics and Integration of Big Omics Data
Systems Analytics and Integration of Big Omics Data
Autore Hardiman Gary
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (202 p.)
Soggetto topico Medicine
Soggetto non controllato algorithm development for network integration
Alzheimer's disease
amyloid-beta
annotation
artificial intelligence
biocuration
bioinformatics pipelines
candidate genes
causal inference
cell lines
challenges
chromatin modification
class imbalance
clinical data
cognitive impairment
curse of dimensionality
data integration
database
deep phenotype
dementia
direct effect
disease variants
distance correlation
drug sensitivity
enrichment analysis
epidemiological data
epigenetics
feature selection
Gene Ontology
gene-environment interactions
genomics
genotype
heterogeneous data
indirect effect
integrative analytics
joint modeling
KEGG pathways
logic forest
machine learning
microtubule-associated protein tau
miRNA-gene expression networks
missing data
multi-omics
multiomics integration
multivariate analysis
multivariate causal mediation
n/a
network topology analysis
neurodegeneration
non-omics data
omics data
pharmacogenomics
phenomics
phenotype
plot visualization
precision medicine informatics
proteomic analysis
regulatory genomics
RNA expression
scalability
sequencing
support vector machine
systemic lupus erythematosus
tissue classification
tissue-specific expressed genes
transcriptome
ISBN 3-03928-745-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404089603321
Hardiman Gary  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui