top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence for Multimedia Signal Processing
Artificial Intelligence for Multimedia Signal Processing
Autore Kim Byung-Gyu
Pubbl/distr/stampa Basel, : MDPI Books, 2022
Descrizione fisica 1 electronic resource (212 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato human-height estimation
depth video
depth 3D conversion
artificial intelligence
convolutional neural networks
deep neural network
convolutional neural network
environmental sound recognition
feature combination
multimodal joint representation
content curation social networks
different recommend tasks
content based recommend systems
scene/place classification
semantic segmentation
deep learning
weighting matrix
speech enhancement
generative adversarial network
relativistic GAN
lightweight neural network
single image super-resolution
image enhancement
image restoration
residual dense networks
visual sentiment analysis
sentiment classification
graph convolutional networks
generative adversarial networks
traffic surveillance image processing
image de-raining
fluency evaluation
speech recognition
data augmentation
variational autoencoder
speech conversion
heartbeat classification
convolutional neural network (CNN)
canonical correlation analysis (CCA)
Indian Sign Language (ISL)
natural language processing
avatar
sign movement
context-free grammar
object detection
logical story unit detection (LSU)
object re-ID
computer vision
image processing
single image artifacts reduction
dense networks
residual networks
channel attention networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595077003321
Kim Byung-Gyu  
Basel, : MDPI Books, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Sensors for Human Motion Analysis
Intelligent Sensors for Human Motion Analysis
Autore Krzeszowski Tomasz
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (382 p.)
Soggetto topico History of engineering and technology
Technology: general issues
Soggetto non controllato 3D human mesh reconstruction
3D human pose estimation
3D multi-person pose estimation
absolute poses
action units
aggregation function
anomaly detection
artifact classification
artifact detection
artificial intelligence
assessment
Azure Kinect
balance
Berg Balance Scale
BILSTM
biometrics
camera-centric coordinates
computer vision
convolutional neural networks
COVID-19
cyber-physical systems
data augmentation
deep learning
deep neural network
deep-learning
development
diagnosis
elderly
EMG
F-Formation
facial expression recognition
facial landmarks
fall risk detection
features fusion
features selection
FFNN
FMCW
fuzzy inference
gait analysis
gait parameters
gait recognition
gap filling
generalization
graph convolutional networks
grey wolf optimization
GRU
human action recognition
human motion analysis
human motion modelling
human tracking
Kinect v2
kinematics
knowledge measure
LSTM
machine learning
markerless
markerless motion capture
MFCC
modular sensing unit
motion capture
movement tracking
n/a
neural networks
optical sensing principle
particle swarm optimization
pattern recognition
plantar pressure measurement
pose estimation
posture detection
precedence indicator
recognition
reconstruction
regularized discriminant analysis
RGB-D sensors
robot
rule induction
skeletal data
socially occupied space
telemedicine
time series classification
vital sign
whale optimization algorithm
XGBoost
Zed 2i
ISBN 3-0365-5074-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469003321
Krzeszowski Tomasz  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui