top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bioinformatics Applications Based On Machine Learning
Bioinformatics Applications Based On Machine Learning
Autore Chamoso Pablo
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (206 p.)
Soggetto topico Technology: general issues
Soggetto non controllato Affective Computing
Arabidopsis thaliana
Artificial Neural Networks
bi-directional LSTM
bioinformatics
biological functions detection
classification
clinical data
clinical implications
cluster
computer vision
convolutional neural network
CTX-M
data mining
Decision table
deep learning
derivative-free optimization
detection
diabetes
dynamic models
ear detection
epidemiology
evolutionary computation
evolutionary computing
feature selection
forecast
fuel cell
gene clustering
genetic programming
glycolysis
gradient boosting
Harmony Search
hybrid systems
hydrogen energy
image recognition
informative genes
intelligent systems
machine learning
Machine Learning
metabolism
metagenomics
metrics
mitochondrial protein
parameter estimation
PART
Particle Swarm Optimization
personality assessment
plasmodium falciparum
power management
real-life patients
regression
swarm intelligence
transposable elements
video analysis
Weka
yeast
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910674055503321
Chamoso Pablo  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Claim Models: Granular Forms and Machine Learning Forms
Claim Models: Granular Forms and Machine Learning Forms
Autore Taylor Greg
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (108 p.)
Soggetto topico Pharmaceutical chemistry and technology
Soggetto non controllato actuarial
claim watching
classification and regression trees
gradient boosting
granular models
individual claims reserving
individual models
loss reserving
machine learning
n/a
neural networks
payments per claim incurred
predictive modeling
risk pricing
ISBN 3-03928-665-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Claim Models
Record Nr. UNINA-9910404090203321
Taylor Greg  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning in Tribology
Machine Learning in Tribology
Autore Tremmel Stephan
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (208 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato amorphous carbon coatings
analysis
artificial intelligence
artificial neural networks
bearing fault diagnosis
BERT
cage instability
condition monitoring
Convolutional Neural Network (CNN)
data mining
databases
digital twin
dynamic friction
evolutionary algorithms
fault data generation
feature engineering
Gaussian processes
Generative Adversarial Network (GAN)
gradient boosting
laser surface texturing
machine learning
meta-modeling
monitoring
n/a
natural language processing
neural networks
optimization
PINN
prediction
random forest
random forest classifier
reduced order modelling
regression
remaining useful life
reynolds equation
rolling bearing dynamics
rolling bearings
rubber seal applications
self-lubricating journal bearings
semi-supervised learning
structure-borne sound
tensor decomposition
texturing during moulding
total knee replacement
tribAIn
tribo-informatics
tribo-testing
triboinformatics
tribology
UHWMPE
unbalanced datasets
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576887003321
Tremmel Stephan  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Agricultural Engineering Technologies and Applications
Sustainable Agricultural Engineering Technologies and Applications
Autore Sultan Muhammad
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (254 p.)
Soggetto topico Research & information: general
Biology, life sciences
Technology, engineering, agriculture
Soggetto non controllato greenhouse
microclimate
Bayesian optimization
deep neural network
roses yield
Gaussian process
gradient boosting
pool boiling heat transfer coefficient
sintered coated porous surfaces
gaussian process
gradient boosting regression trees
response surface
renovation index
CFD simulation
airflow
evaporative cooling
desiccant dehumidification
agricultural storage
air conditioning
system performance
lemon cordial
microwave
preservation
green processing
antioxidant potential
renewable energy
Scheffler concentrator reflector
batch-type solar roaster
response surface methodology
coffee roasting
municipal solid waste
sanitary landfill
open dumps
waste to energy
climate change
yogurt processing
solar energy
solar-based heating and cooling
thermal analysis
vegetable yield
nitrogen use efficiency
nutrient leaching
leaching-to-input ratio
nitrogen fertilizer economic benefit
environment
eutrophication
particulate fraction
effluent
treatment
thermal screens
heating demand
TRNSYS
greenhouse internal temperature
building energy simulation
longwave radiation
soil total nitrogen
BP neural network
support vector machines
spatial distribution
remote sensing
ISBN 3-0365-5889-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639995503321
Sultan Muhammad  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui