top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function
3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function
Autore Latifi Hooman
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (188 p.)
Soggetto topico Biology, life sciences
Soggetto non controllato 3D
3D remote sensing
allometric scaling and resource limitation model
codispersion coefficient
codispersion map
composition
crowdsourced data
diameter at breast height (DBH)
digital photogrammetry
DSM
forest canopy height
forest ecology
forest fire
Fractional cover analysis
function
google earth engine
Google Street View
ground validation
GSV
habitat fragmentation
harvester
high-voltage power transmission lines
imputation
interrater agreement
kriging
Landsat 8
landscape fragmentation
Lantana camara
laser
maximum forest heights
measurement error
metabolic scale theory
missing observations
mountainous areas
multi-spectral
municipal forestry
normalized difference vegetation index (NDVI)
Norway spruce
nu SVR
optimization
point cloud
polarimetery
product recovery
random Hough transform
RapidEye
spatial noise
species identification
SPOT-6
SRTMGL1
street trees
structure
stump diameter
stump height
terrestrial laser scanner
terrestrial laser scanning
tree height
tree measurement
uneven-aged mountainous
urban ecology
urban forestry
ZiYuan-3 stereo images
ISBN 3-03921-783-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 3D Remote Sensing Applications in Forest Ecology
Record Nr. UNINA-9910367744003321
Latifi Hooman  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing in Mangroves
Remote Sensing in Mangroves
Autore Giri Chandra
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (292 p.)
Soggetto topico Technology: general issues
Soggetto non controllato above-ground biomass
aboveground biomass
aboveground biomass estimation
accuracy assessment
ALOS PALSAR-2
ALOS-2 PALSAR-2
Can Gio biosphere reserve
cellular automata
change detection
classification
cloud computing
color
data fusion
digital earth
DSM
ecosystem
estuary
EVI
extreme gradient boosting
forest monitoring
fragmentation
GAMs
GEEMMM
Generalized Additive Models
GLAS
GLCM
google earth engine
Google Earth Engine
Great Barrier Reef
intensity analysis
JERS-1
land cover
land cover dynamics
land degradation
land use
Landsat
LiDAR
machine learning
mangrove
mangrove condition
mangrove development
mangrove forests
mangrove plantation
mangroves
Markov chain
multi-temporal analysis
Myanmar
n/a
Niger Delta Region
optical images
phenology
protected area
random forest
remote sensing
RGB
SAR
satellite earth observation
Sentinel-2
spectral-temporal metrics
time series
time series analysis
transgression
upscaling
vegetation index
Vietnam
Worldview-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557495403321
Giri Chandra  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui