top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function
3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function
Autore Latifi Hooman
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (188 p.)
Soggetto non controllato normalized difference vegetation index (NDVI)
SRTMGL1
SPOT-6
urban ecology
terrestrial laser scanner
Lantana camara
terrestrial laser scanning
harvester
product recovery
imputation
optimization
multi-spectral
function
ZiYuan-3 stereo images
spatial noise
3D remote sensing
tree measurement
diameter at breast height (DBH)
DSM
metabolic scale theory
municipal forestry
digital photogrammetry
Norway spruce
missing observations
interrater agreement
measurement error
stump height
Fractional cover analysis
google earth engine
high-voltage power transmission lines
habitat fragmentation
codispersion coefficient
forest fire
tree height
nu SVR
RapidEye
uneven-aged mountainous
random Hough transform
kriging
street trees
ground validation
Google Street View
laser
species identification
composition
maximum forest heights
mountainous areas
landscape fragmentation
Landsat 8
forest canopy height
allometric scaling and resource limitation model
urban forestry
point cloud
GSV
stump diameter
structure
3D
codispersion map
forest ecology
polarimetery
crowdsourced data
ISBN 3-03921-783-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 3D Remote Sensing Applications in Forest Ecology
Record Nr. UNINA-9910367744003321
Latifi Hooman  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing in Mangroves
Remote Sensing in Mangroves
Autore Giri Chandra
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (292 p.)
Soggetto topico Technology: general issues
Soggetto non controllato Landsat
estuary
protected area
land use
land cover
change detection
time series
Great Barrier Reef
Sentinel-2
ALOS-2 PALSAR-2
mangrove
above-ground biomass
extreme gradient boosting
Can Gio biosphere reserve
Vietnam
LiDAR
random forest
GLAS
aboveground biomass
mangrove plantation
aboveground biomass estimation
optical images
SAR
DSM
vegetation index
color
RGB
accuracy assessment
transgression
mangrove development
machine learning
mangrove condition
classification
remote sensing
ecosystem
upscaling
Worldview-2
Niger Delta Region
mangroves
land cover dynamics
intensity analysis
fragmentation
spectral-temporal metrics
land degradation
ALOS PALSAR-2
JERS-1
GLCM
Markov chain
cellular automata
data fusion
forest monitoring
Google Earth Engine
mangrove forests
multi-temporal analysis
satellite earth observation
time series analysis
GEEMMM
google earth engine
Myanmar
cloud computing
digital earth
GAMs
Generalized Additive Models
EVI
phenology
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557495403321
Giri Chandra  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui