top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Financial Statistics and Data Analytics
Financial Statistics and Data Analytics
Autore Liu Shuangzhe
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (232 p.)
Soggetto topico Collecting coins, banknotes, medals and other related items
Soggetto non controllato ACD models
asymptotic
B-splines
banking competition
Bitcoin
bonds
Box-Cox transformation
capital asset pricing model
characteristic function-based estimator
convergence analysis
credit risk
efficiency
estimation
estimation of systematic risk
Euro-Dollar
financial incentives
financial models
fractal scaling
GARCH model
generalized Birnbaum-Saunders distributions
generalized method of moments
gold price
goodness-of-fit
Griddy-Gibs
HARCH model
heavy tails
high-frequency financial data
Hill estimator
Index parameter
intention to leave
interest rates
job performance
job satisfaction
Lerner index
long range dependence
multicollinearity
multifactor asset pricing model
multifractal processes
no-arbitrage
NPLs
oil price
PHARCH model
public service motivation
ridge regression
safe-haven assets
seemingly unrelated regression model
shrinkage estimator
stochastic frontiers
Swiss Franc exchange rate
t-distribution
tests of mean-variance efficiency
Theil index
time series
wrapped stable
yeld curve
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557128703321
Liu Shuangzhe  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
New Developments in Statistical Information Theory Based on Entropy and Divergence Measures / Leandro Pardo
New Developments in Statistical Information Theory Based on Entropy and Divergence Measures / Leandro Pardo
Autore Pardo Leandro
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (344 p.)
Soggetto non controllato mixture index of fit
Kullback-Leibler distance
relative error estimation
minimum divergence inference
Neyman Pearson test
influence function
consistency
thematic quality assessment
asymptotic normality
Hellinger distance
nonparametric test
Berstein von Mises theorem
maximum composite likelihood estimator
2-alternating capacities
efficiency
corrupted data
statistical distance
robustness
log-linear models
representation formula
goodness-of-fit
general linear model
Wald-type test statistics
Hölder divergence
divergence
logarithmic super divergence
information geometry
sparse
robust estimation
relative entropy
minimum disparity methods
MM algorithm
local-polynomial regression
association models
total variation
Bayesian nonparametric
ordinal classification variables
Wald test statistic
Wald-type test
composite hypotheses
compressed data
hypothesis testing
Bayesian semi-parametric
single index model
indoor localization
composite minimum density power divergence estimator
quasi-likelihood
Chernoff Stein lemma
composite likelihood
asymptotic property
Bregman divergence
robust testing
misspecified hypothesis and alternative
least-favorable hypotheses
location-scale family
correlation models
minimum penalized ?-divergence estimator
non-quadratic distance
robust
semiparametric model
divergence based testing
measurement errors
bootstrap distribution estimator
generalized renyi entropy
minimum divergence methods
generalized linear model
?-divergence
Bregman information
iterated limits
centroid
model assessment
divergence measure
model check
two-sample test
Wald statistic
ISBN 9783038979371
3038979376
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346856403321
Pardo Leandro  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui