top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied Cognitive Sciences
Applied Cognitive Sciences
Autore Kovari Attila
Pubbl/distr/stampa Basel, : MDPI Books, 2022
Descrizione fisica 1 electronic resource (292 p.)
Soggetto topico Information technology industries
Soggetto non controllato computer adaptive testing
code tracing
basic programming skills
internet of thing (IoT)
eye tracking
heart rate (HR)
measurements
data analysis
Internet addiction
dysfunctional emotions
coping strategies
emotional problems
human-AI interaction
interaction design
Kansei engineering
user satisfaction
voice-based intelligent system
dynamic gesture recognition
gesture spotting
self-organizing map
computational psychology
computational cognitive modeling
machine learning
concept blending
conceptual combinations
recall
computational creativity
cognition
instance selection
clustering
information processing
cognitive aspects
remote
virtual simulation
incident commander
user experiences
problem solving
decision making
assessment
learning
privacy-preserving computations
homomorphic encryption
EEG signals
school children
functional vision
vision screening
vision training
eye-tracking
stakeholders
human-robot interaction
social gaze
eye-to-eye contact
emotional interfaces
eye-brain-computer interfaces
attention
reflection
usability
brain hemispheric lateralization
online educational material
instructional design
methodology
model
virtual reality
virtual environment
stress
spaceflight
training
EEG
emotion
neural networks
M3GP
BED
Emotiv
multiclass
deep learning
traffic accident
spatially prolonged risk
Gestalt
proximity
open data
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595068903321
Kovari Attila  
Basel, : MDPI Books, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning-Based Action Recognition
Deep Learning-Based Action Recognition
Autore Lee Hyo Jong
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (240 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato 3D skeletal
3D-CNN
action recognition
activity recognition
artificial intelligence
class regularization
class-specific features
CNN
continuous hand gesture recognition
convolutional receptive field
data augmentation
deep learning
dynamic gesture recognition
Dynamic Hand Gesture Recognition
embedded system
feature fusion
feedforward neural networks
fusion strategies
gesture classification
gesture spotting
graph convolution
hand gesture recognition
hand shape features
high-order feature
human action recognition
human activity recognition
human-computer interaction
human-machine interface
Long Short-Term Memory
multi-modal features
multi-modalities network
multi-person pose estimation
n/a
partition pose representation
partitioned centerpose network
pose estimation
real-time
spatio-temporal differential
spatio-temporal feature
spatio-temporal image formation
spatiotemporal activations
spatiotemporal feature
stacked hourglass network
transfer learning
ISBN 3-0365-5200-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619465803321
Lee Hyo Jong  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui