top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning-Based Machinery Fault Diagnostics
Deep Learning-Based Machinery Fault Diagnostics
Autore Chen Hongtian
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (290 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato abnormal case removal
alumina concentration
aluminum reduction process
anti-noise
attention mechanism
autonomous underwater vehicle
auxiliary model
Bayesian network
bearing fault detection
belief rule base
canonical correlation analysis
canonical variate analysis
case-based reasoning
convolution fusion
convolutional neural network
data augmentation
data-driven
deep residual network
distributed predictive control
disturbance detection
dynamic autoregressive latent variables model
dynamics
event-triggered control
evidential reasoning
evidential reasoning rule
fault detection
fault diagnosis
fault tolerant control
filter
flywheel fault diagnosis
fractional-order calculus theory
fuzzy fault tree analysis
gated recurrent unit
gearbox fault diagnosis
hammerstein output-error systems
high-speed trains
information transformation
intelligent fault diagnosis
interval type-2 Takagi-Sugeno fuzzy model
just-in-time learning
k-nearest neighbor analysis
local outlier factor
LSSVM
multi-innovation identification theory
n/a
nonlinear networked systems
ocean currents
operational optimization
parameter optimization
power transmission system
process monitoring
PSO
robust optimization
sintering process
spatiotemporal feature fusion
stacked pruning sparse denoising autoencoder
state identification
statistical local analysis
subspace identification
system modelling
thruster fault diagnostics
variable time lag
wavelet mutation
ISBN 3-0365-5174-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469103321
Chen Hongtian  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sensors Fault Diagnosis Trends and Applications
Sensors Fault Diagnosis Trends and Applications
Autore Witczak Piotr
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (236 p.)
Soggetto topico Technology: general issues
Soggetto non controllato acoustic emission signals
acoustic-based diagnosis
actuator and sensor fault
adaptive noise reducer
artificial neural network
attention mechanism
automotive
autonomous vehicle
bearing fault diagnosis
braking control
control valve
convolutional neural network
cryptography
decision tree
deep learning
fault detection
fault detection and diagnosis
fault detection and isolation
fault detection and isolation (FDIR)
fault diagnosis
fault identification
fault isolation
fault recovery
fault tolerant control
faults estimation
gaussian reference signal
gear fault diagnosis
gearbox fault diagnosis
hybrid kernel function
intelligent leak detection
iterative learning control
krill herd algorithm
lidar
machine learning
model predictive control
n/a
NARX
neural networks
nonlinear systems
observer design
one against on multiclass support vector machine
path tracking control
perception sensor
performance degradation
rolling bearing
scan-chain diagnosis
Shannon entropy
signature matrix
stacked auto-encoder
statistical parameters
support vector machine
SVR
Takagi-Sugeno fuzzy systems
varying rotational speed
wavelet denoising
weighting strategy
wireless sensor networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557506603321
Witczak Piotr  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui