top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning Applications with Practical Measured Results in Electronics Industries
Deep Learning Applications with Practical Measured Results in Electronics Industries
Autore Kung Hsu-Yang
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (272 p.)
Soggetto non controllato faster region-based CNN
visual tracking
intelligent tire manufacturing
eye-tracking device
neural networks
A*
information measure
oral evaluation
GSA-BP
tire quality assessment
humidity sensor
rigid body kinematics
intelligent surveillance
residual networks
imaging confocal microscope
update mechanism
multiple linear regression
geometric errors correction
data partition
Imaging Confocal Microscope
image inpainting
lateral stage errors
dot grid target
K-means clustering
unsupervised learning
recommender system
underground mines
digital shearography
optimization techniques
saliency information
gated recurrent unit
multivariate time series forecasting
multivariate temporal convolutional network
foreign object
data fusion
update occasion
generative adversarial network
CNN
compressed sensing
background model
image compression
supervised learning
geometric errors
UAV
nonlinear optimization
reinforcement learning
convolutional network
neuro-fuzzy systems
deep learning
image restoration
neural audio caption
hyperspectral image classification
neighborhood noise reduction
GA
MCM uncertainty evaluation
binary classification
content reconstruction
kinematic modelling
long short-term memory
transfer learning
network layer contribution
instance segmentation
smart grid
unmanned aerial vehicle
forecasting
trajectory planning
discrete wavelet transform
machine learning
computational intelligence
tire bubble defects
offshore wind
multiple constraints
human computer interaction
Least Squares method
ISBN 3-03928-864-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404080403321
Kung Hsu-Yang  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning-Based Machinery Fault Diagnostics
Deep Learning-Based Machinery Fault Diagnostics
Autore Chen Hongtian
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (290 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato process monitoring
dynamics
variable time lag
dynamic autoregressive latent variables model
sintering process
hammerstein output-error systems
auxiliary model
multi-innovation identification theory
fractional-order calculus theory
canonical variate analysis
disturbance detection
power transmission system
k-nearest neighbor analysis
statistical local analysis
intelligent fault diagnosis
stacked pruning sparse denoising autoencoder
convolutional neural network
anti-noise
flywheel fault diagnosis
belief rule base
fuzzy fault tree analysis
Bayesian network
evidential reasoning
aluminum reduction process
alumina concentration
subspace identification
distributed predictive control
spatiotemporal feature fusion
gated recurrent unit
attention mechanism
fault diagnosis
evidential reasoning rule
system modelling
information transformation
parameter optimization
event-triggered control
interval type-2 Takagi-Sugeno fuzzy model
nonlinear networked systems
filter
gearbox fault diagnosis
convolution fusion
state identification
PSO
wavelet mutation
LSSVM
data-driven
operational optimization
case-based reasoning
local outlier factor
abnormal case removal
bearing fault detection
deep residual network
data augmentation
canonical correlation analysis
just-in-time learning
fault detection
high-speed trains
autonomous underwater vehicle
thruster fault diagnostics
fault tolerant control
robust optimization
ocean currents
ISBN 3-0365-5174-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469103321
Chen Hongtian  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems
Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems
Autore Li Chaoshun
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (212 p.)
Soggetto topico Research & information: general
Physics
Soggetto non controllato doubly-fed variable-speed pumped storage
Hopf bifurcation
stability analysis
parameter sensitivity
pumped storage unit
degradation trend prediction
maximal information coefficient
light gradient boosting machine
variational mode decomposition
gated recurrent unit
high proportional renewable power system
active power
change point detection
maximum information coefficient
cosine similarity
anomaly detection
thermal-hydraulic characteristics
hydraulic oil viscosity
hydraulic PTO
wave energy converter
pumped storage units
pressure pulsation
noise reduction
sparrow search algorithm
hybrid system
facility agriculture
chaotic particle swarms method
operation strategy
stochastic dynamic programming (SDP)
power yield
seasonal price
reliability
cascaded reservoirs
doubly-fed variable speed pumped storage power station
nonlinear modeling
nonlinear pump turbine characteristics
pumped storage units (PSUs)
successive start-up
‘S’ characteristics
low water head conditions
multi-objective optimization
fractional order PID controller (FOPID)
hydropower units
comprehensive deterioration index
long and short-term neural network
ensemble empirical mode decomposition
approximate entropy
1D–3D coupling model
transition stability
sensitivity analysis
hydro power
ISBN 3-0365-5838-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637780603321
Li Chaoshun  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Process Modeling in Pyrometallurgical Engineering
Process Modeling in Pyrometallurgical Engineering
Autore Saxen Henrik
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (642 p.)
Soggetto topico Technology: general issues
Soggetto non controllato steelmaking
oxygen consumption
GPR
prediction model
secondary refining
water model
mixing time
slag entrapment
stainless steel slag
heating time
Cr2O3
spinel
crystal size
processing maps
nickel-based alloy
flow behavior
arrhenius equation
hearth
drainage
PCA
analysis tool
pattern
tapholes
blast furnace
coke
carbon solution loss
numerical simulation
pellet pile
Discrete Element Method
porosity distribution
angle of repose
coordination number
bubble motion
interfacial phenomena
entrainment
moving path
arsenopyrite
arsenic removal
mechanism
roasting
arsenate
dust ash
arsenic recovery
titanium distribution ratio
thermodynamic model
ion-molecule coexistence theory
LF refining slags
electric arc furnace
simulation
process model
COREX
raceway zone
gas flow
COREX melter gasifier
mixed charging
burden layer structure
burden pile width
DEM
burden distribution
particle flow
validation
tire cord steel
TiN inclusion
solidification
segregation models
hot rolling
TOU electricity pricing
hot rolling planning
genetic algorithm
C-H2 smelting reduction furnace
double-row side nozzles
dimensional analysis
multiple linear regression
ironmaking blast furnace
coke bed
trickle flow
molten slag
liquid iron
SPH
charging system
mathematical model
radar data
main trough
transient fluid of hot metal and molten slag
wall shear stress
conjugate heat transfer
refractory
shape rolling
flat rolling
wire rod
temperature distribution
machine learning
artificial intelligence
neural network
BOS reactor
copper smelting
SKS
Shuikoushan process
oxygen bottom blown
gated recurrent unit
support vector data description
time sequence prediction
fault detection and identification
Lignite
microwave and ultrasound modification
structural characterization
3D molecular model
structural simulation
coke combustion rate
charcoal combustion rate
iron ore sintering process
biomass
quasi-particle
quasi-particle structure
monomer blended fuel
quasi-particle fuel
apparent activation energy
coupling effect
dynamic model
basic oxygen furnace
computational fluid dynamics
CFD-DEM
coalescence
settling
funneling flow
horizontal single belt casting process (HSBC)
computational fluid dynamics (CFD)
double impingement feeding system
supersonic coherent jet
decarburization
steel refining
EAF
CFD
mass transfer coefficient
physical modeling
mathematical modeling
kinetic models
natural gas
fuel injection
combustion
RAFT
roll design
flat-rolled wire
strain inhomogeneity
normal pressure
macroscopic shear bands
numerical model
dual gas injection
slag eye
electrical energy consumption
Electric Arc Furnace
scrap melting
statistical modeling
raceway evolution
raceway size
flow pattern
Eulerian multiphase flow
blast furnace hearth
dead man
iron and slag flow
lining wear
hearth drainage
Industry 4.0
copper smelter
nickel-copper smelter
radiometric sensors
Peirce-smith converting
matte-slag chemistry
discrete event simulation
adaptive finite differences
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557580503321
Saxen Henrik  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wearable Sensors Applied in Movement Analysis
Wearable Sensors Applied in Movement Analysis
Autore Buisseret Fabien
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (154 p.)
Soggetto topico Medical equipment & techniques
Soggetto non controllato inertial measurement unit
movement analysis
long-track speed skating
validity
IMU
principal component analysis
wearable
scoring
carving
balance assessment
data augmentation
gated recurrent unit
human activity recognition
one-dimensional convolutional neural network
intermittent claudication
vascular rehabilitation
6 min walking test
functional walking
TUG
kinematics
fall risk
logistic regression
elderly
inertial sensor
artificial intelligence
supervised machine learning
head rotation test
neck pain
cerebral palsy
dystonia
choreoathetosis
machine learning
home-based
wearable device
MLP
gesture recognition
flex sensor
model search
neural network
inertial measurement unit-IMU
movement complexity
sample entropy
trunk flexion
low back pain
lifting technique
camera system
ward clustering method
K-means clustering method
ensemble clustering method
Bayesian neural network
pain self-efficacy questionnaire
ISBN 3-0365-5859-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637794103321
Buisseret Fabien  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui