top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fuzzy Sets in Business Management, Finance, and Economics
Fuzzy Sets in Business Management, Finance, and Economics
Autore de Andres Sanchez Jorge
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (346 p.)
Soggetto topico Mathematics & science
Research & information: general
Soggetto non controllato adoption of environmental practices
assessment risk
audit risk assessment
audit team leader
bitcoin
blockchain
Bonferroni means
bonus-malus system
brand attachment
clustering techniques
convenience stores
correlation between fuzzy variables
corruption normalization
corruption perception
cryptocurrencies
Debreu-Farrell productivity index
decision making
decision-making
economic models
education level
efficiency
enhancement strategy
entrepreneurial intention
evaluation of specialists
experience
expert group
experton theory
extension principle
family entrepreneurial background
financial knowledge
fintech
forgotten effects theory
Forgotten Effects Theory
fsQCA
fuzzy arithmetic
fuzzy data analysis
fuzzy logic
Fuzzy Logic
fuzzy Markov chain
fuzzy number
fuzzy numbers
fuzzy quality function deployment
fuzzy set qualitative comparative analysis
fuzzy sets
fuzzy stationary state
fuzzy theory
fuzzy transition probability
gender
genetic algorithm
Hamming distance
Harrod's growth
household income
human resource costs
induced aggregation operators
information technology support
intention to use
intuitionistic fuzzy sets
knowledge systems
Latin America
linguistic variables
manufacturing process
mobility
neuro-fuzzy assessment
organizational learning capability
OWA operator
planification
poverty policy
prioritized aggregation operators
public financial resources
pythagorean membership
recovery plan
SDGs
selection of quality methods
size
small- and medium-sized audit firms
smart city
smart transport
STEM
sustainability
The Quintuple Helix of Innovation Model
tourist destination competitiveness
transparency
transparent selection
unified theory of acceptance and use of technology
university ranking
unsupervised pattern recognition
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557612703321
de Andres Sanchez Jorge  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fuzzy Sets, Fuzzy Logic and Their Applications 2020
Fuzzy Sets, Fuzzy Logic and Their Applications 2020
Autore Voskoglou Michael
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (452 p.)
Soggetto topico Mathematics & science
Research & information: general
Soggetto non controllato alternative fixed point theorem
B-spline surface model function
Bayesian probabilities
bipolar fuzzy topology
bipolar gradation of closedness
bipolar gradation of openness
bipolar gradation preserving map
defuzzification
distance measure
dynamic random access memory
embedding method
entropy
FAHP
FCOPRAS
FTOPSIS
fuzzification
fuzzy AHP
fuzzy arithmetic
fuzzy calculus
fuzzy collaborative forecasting
fuzzy difference equations
fuzzy differential equations
fuzzy implication
fuzzy intersection
fuzzy linear system
fuzzy logic
fuzzy logic (FL)
fuzzy logic connectives
fuzzy max-T algebra
fuzzy measures
fuzzy nonlinear systems
fuzzy normed linear space
fuzzy number
fuzzy number vector
fuzzy parametric form
fuzzy relations: fuzzy sets
fuzzy set
fuzzy soft set
fuzzy statistics
fuzzy TOPSIS
GEFS
governance
hexagonal fuzzy number
homomorphism of graph products
Hyers-Ulam stability
i-octahedron ideal
i-octahedron subgroupoid
i-octahedron subring
i-sup-property, i-octahedron subgroup
inductive and deductive reasoning
information measure
interval eigenvector
interval matrix
interval-valued fuzzy competition graph
interval-valued fuzzy neighbourhood graph
interval-valued fuzzy p competition graph
interval-valued m-step fuzzy competition graph
intuitionistic fuzzy normed spaces
law of importation
least fuzzy negation
linguistic terms for fuzzy variable
ℒℳℱ??
Łukasiewicz triangular norm
management system
max-Łukasiewicz algebra
max-min algebra
max-min composition
measure of non-compactness
min-max composition
mixed continuous-discrete model
monotone measures
monotone statistical parameters
multi-fuzzy set
multi-fuzzy soft set
multidimensional fuzzy arithmetic
neutrosophic set
octahedron set
ordering property
parametric solvability
partial consensus
pexider type functional equation
plithogenic set
probability and statistics
product spaces
RDM fuzzy arithmetic
Schauder fixed point theorem
scientific method
SEFS
shopping mall site selection
similarity measure
similarity measure of ℒℳℱ??
site selection
soft set
strong interval eigenvector
strongly generalized Hukuhara differentiability
t-conditionality
t-norm
time value of money
type-2 fuzzy set
type-reduction
α-migrativity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557343903321
Voskoglou Michael  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Theory and Applications of Ordered Fuzzy Numbers [[electronic resource] ] : A Tribute to Professor Witold Kosiński / / edited by Piotr Prokopowicz, Jacek Czerniak, Dariusz Mikołajewski, Łukasz Apiecionek, Dominik Ślȩzak
Theory and Applications of Ordered Fuzzy Numbers [[electronic resource] ] : A Tribute to Professor Witold Kosiński / / edited by Piotr Prokopowicz, Jacek Czerniak, Dariusz Mikołajewski, Łukasz Apiecionek, Dominik Ślȩzak
Autore Łukasz Apiecionek
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Springer Nature, 2017
Descrizione fisica 1 online resource (XVIII, 322 p. 156 illus., 106 illus. in color.)
Disciplina 006.3
Collana Studies in Fuzziness and Soft Computing
Soggetto topico Computational intelligence
Control engineering
Operations research
Decision making
Management science
Computational Intelligence
Control and Systems Theory
Operations Research/Decision Theory
Operations Research, Management Science
Soggetto non controllato fuzzy prediction models
uncertainty modeling
trend processing
propagation of uncertainty
fuzzy arithmetic
analysis
defuzzyfication
Kosinski’s fuzzy numbers
ISBN 3-319-59614-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Memories of Professor Witold Kosiński -- Scientific Development -- Scientific and Academic Achievements (Part I) -- Scientific and Academic Achievements (Part II) -- Scientific Collaboration -- Teaching and Supervision -- Scientific and Social Services -- Personality and Memoires -- Acknowledgements -- Contents -- Part I Background of Fuzzy Set Theory -- 1 Introduction to Fuzzy Sets -- 1.1 Classic and Fuzzy Sets -- 1.2 Fuzzy Sets---Basic Definitions -- 1.3 Extension Principle -- 1.4 Fuzzy Relations -- 1.5 Cylindrical Extension and Projection of a Fuzzy Set -- 1.6 Fuzzy Numbers -- 1.7 Summary -- References -- 2 Introduction to Fuzzy Systems -- 2.1 Introduction -- 2.2 Fuzzy Conditional Rules -- 2.3 Approximate Reasoning -- 2.3.1 Compositional Rule of Inference -- 2.3.2 Approximate Reasoning with Knowledge Base -- 2.3.3 Fuzzification and Defuzzification -- 2.4 Basic Types of Fuzzy Systems -- 2.4.1 Mamdani--Assilan Fuzzy Model -- 2.4.2 Takagi--Sugeno--Kang Fuzzy System -- 2.4.3 Tsukamoto Fuzzy System -- 2.5 Summary -- References -- Part II Theory of Ordered Fuzzy Numbers -- 3 Ordered Fuzzy Numbers: Sources and Intuitions -- 3.1 Introduction -- 3.2 Problems with Calculations on Fuzzy Numbers -- 3.3 Related Work -- 3.4 Decomposition of Fuzzy Memberships -- 3.5 Idea of Ordered Fuzzy Numbers -- 3.6 Summary -- References -- 4 Ordered Fuzzy Numbers: Definitions and Operations -- 4.1 Introduction -- 4.2 The Ordered Fuzzy Number Model -- 4.3 Basic Notions for OFNs -- 4.3.1 Standard Representation of OFNs -- 4.3.2 OFN Support -- 4.3.3 OFN Membership Function -- 4.3.4 Real Numbers as OFN Singletons -- 4.4 Improper OFNs -- 4.5 Basic Operations on OFNs -- 4.5.1 Addition and Subtraction -- 4.5.2 Multiplication and Division -- 4.5.3 General Model of Operations -- 4.5.4 Solving Equations -- 4.6 Interpretations of OFNs.
4.6.1 Direction as a Trend -- 4.6.2 Validity of Operations -- 4.6.3 The Meaning of Improper OFNs -- 4.7 Summary and Further Intuitions -- References -- 5 Processing Direction with Ordered Fuzzy Numbers -- 5.1 Introduction -- 5.2 Direction Measurement Tool -- 5.2.1 The PART Function -- 5.2.2 The Direction Determinant -- 5.3 Compatibility Between OFNs -- 5.4 Inference Sensitive to Direction -- 5.4.1 Directed Inference Operation -- 5.4.2 Examples -- 5.5 Aggregation of OFNs -- 5.5.1 The Aggregation's Basic Properties -- 5.5.2 Arithmetic Mean Directed Aggregation -- 5.5.3 Aggregation for Premise Parts of Fuzzy Rules -- 5.6 Summary -- References -- 6 Comparing Fuzzy Numbers Using Defuzzificators on OFN Shapes -- 6.1 Introduction -- 6.2 Formal Approach to the Problem -- 6.3 Defuzzification Methods -- 6.3.1 Defuzzification Methods for OFN -- 6.4 Definition of Golden Ratio Defuzzification Operator -- 6.4.1 Golden Ratio for OFN -- 6.5 Golden Ratio -- 6.6 Defuzzification Conditions for GR -- 6.6.1 Normalization -- 6.6.2 Restricted Additivity -- 6.6.3 Homogeneity -- 6.7 Definition of Mandala Factor Defuzzification Operator -- 6.8 Mandala Factor -- 6.9 Defuzzification Conditions for MF -- 6.9.1 Normalization -- 6.9.2 Restricted Additivity -- 6.9.3 Homogeneity -- 6.10 Catalogue of the Shapes of Numbers in OFN Notation -- 6.11 Conclusion -- References -- 7 Two Approaches to Fuzzy Implication -- 7.1 Introduction -- 7.2 Lattice Structure and Implications on SOFNs -- 7.2.1 Step-Ordered Fuzzy Numbers -- 7.2.2 Lattice on mathcalRK -- 7.2.3 Complements and Negation on calN -- 7.2.4 Fuzzy Implication on BSOFN -- 7.2.5 Applications -- 7.3 Metasets -- 7.3.1 The Binary Tree T and the Boolean Algebra mathfrakB -- 7.3.2 General Definition of Metaset -- 7.3.3 Interpretations of Metasets -- 7.3.4 Forcing -- 7.3.5 Set-Theoretic Relations for Metasets.
7.3.6 Applications of Metasets -- 7.3.7 Classical and Fuzzy Implication -- 7.4 Conclusions and Further Research -- References -- Part III Examples of Applications -- 8 OFN Capital Budgeting Under Uncertainty and Risk -- 8.1 Introduction -- 8.2 Ordered Fuzzy Numbers -- 8.3 Classic Capital Budgeting Methods -- 8.4 Fuzzy Approach to the Discount Methods -- 8.5 Computational Example of the Investment Project -- 8.6 Summary -- References -- 9 Input-Output Model Based on Ordered Fuzzy Numbers -- 9.1 Introduction -- 9.2 Input-Output Analysis -- 9.3 Example of Application of OFNs in the Leontief Model -- 9.4 Conclusions -- References -- 10 Ordered Fuzzy Candlesticks -- 10.1 Introduction -- 10.2 Ordered Fuzzy Candlesticks -- 10.3 Volume and Spread -- 10.3.1 Volume -- 10.3.2 Spread -- 10.4 Ordered Fuzzy Candlesticks in Technical Analysis -- 10.4.1 Ordered Fuzzy Technical Analysis Indicators -- 10.4.2 Ordered Fuzzy Candlestick as Technical Analysis Indicator -- 10.5 Ordered Fuzzy Time Series Models -- 10.6 Conclusion and Future Works -- References -- 11 Detecting Nasdaq Composite Index Trends with OFNs -- 11.1 Introduction -- 11.2 Application of OFN Notation for the Fuzzy Observation of NASDAQ Composite -- 11.3 Ordered Fuzzy Number Formulas -- 11.4 Conclusions -- References -- 12 OFNAnt Method Based on TSP Ant Colony Optimization -- 12.1 Introduction -- 12.2 Application of Ant Colony Algorithms in Searching for the Optimal Route -- 12.3 OFNAnt, a New Ant Colony Algorithm -- 12.4 Experiment -- 12.4.1 Experiment Execution Method -- 12.4.2 Software Used for Experiment -- 12.4.3 Experimental Data -- 12.5 Results of Experiment -- 12.6 Summary and Conclusions -- References -- 13 A New OFNBee Method as an Example of Fuzzy Observance Applied for ABC Optimization -- 13.1 Introduction -- 13.2 ABC (Artificial Bee Colony) Model -- 13.3 Selected OFN Issues.
13.4 New Hybrid OFNBee Method -- 13.5 Experimental Results -- 13.6 Conclusion -- References -- 14 Fuzzy Observation of DDoS Attack -- 14.1 Introduction -- 14.2 DDoS Attack Description and Recognition -- 14.3 The Idea of Attack Recognition and Prevention -- 14.4 Attack Observation Using OFNs -- 14.5 Experiment Test Results -- 14.5.1 Test Description -- 14.5.2 Attack Detection Using Proposed Method -- 14.6 Conclusions-Method Comparision -- References -- 15 Fuzzy Control for Secure TCP Transfer -- 15.1 Introduction -- 15.2 Multipath TCP -- 15.3 Multipath TCP Schedulers -- 15.3.1 Multipath TCP Standard Scheduler -- 15.3.2 Multipath TCP Secure Scheduler -- 15.3.3 Multipath TCP Scheduler with OFN Usage -- 15.3.4 OFN for Problem Detection -- 15.4 OFN Scheduler Algorithm -- 15.5 Simulation Test Results -- 15.6 Conclusions -- References -- 16 Fuzzy Numbers Applied to a Heat Furnace Control -- 16.1 Introduction -- 16.2 Selected Definitions -- 16.2.1 The Essence of Ordered Fuzzy Numbers -- 16.2.2 Fuzzy Controller -- 16.2.3 Control of the Stove on Solid Fuel -- 16.3 Classic Fuzzy Controller -- 16.4 The Controller for the OFNs -- 16.4.1 Directed OFN as a Combustion Trend -- 16.5 Modeling Trend in the Inference Process -- 16.6 Conclusions -- References -- 17 Analysis of Temporospatial Gait Parameters -- 17.1 Introduction -- 17.2 Methods -- 17.2.1 Subjects -- 17.2.2 Methods -- 17.2.3 Statistical Analysis -- 17.2.4 Fuzzy-Based Tool for Gait Assessment -- 17.2.5 Main Ideas of the OFN Model -- 17.2.6 OFN Model in Gait Assessment -- 17.3 Results -- 17.4 Discussion -- 17.5 Conclusions -- References -- 18 OFN-Based Brain Function Modeling -- 18.1 Introduction -- 18.2 State of the Art -- 18.2.1 Theory -- 18.2.2 Modeling Complex Ideas with Fuzzy Systems -- 18.2.3 Clinical Practice -- 18.2.4 Models for Linking Hypotheses and Experimental Studies -- 18.3 Concepts.
18.3.1 Data Ladder -- 18.3.2 Models of a Single Neuron -- 18.3.3 Models of Biologically Relevant Neural Networks -- 18.3.4 Models of Human Behavior -- 18.4 Traditional versus Fuzzy Approach -- 18.5 OFN as an Alternative Approach to Fuzziness -- 18.6 Patterns and Examples -- 18.6.1 Intuitive Modeling of the Complex Functions -- 18.6.2 Improving Policy Gradient Method -- 18.6.3 Modeling Learning Rate with the OFNs -- 18.7 Discussion -- 18.7.1 Results of Other Scientists -- 18.7.2 Limitations of Our Approach and Directions for Further Research -- 18.8 Conclusions -- References.
Record Nr. UNINA-9910231246403321
Łukasz Apiecionek  
Springer Nature, 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui