Fuzzy Sets in Business Management, Finance, and Economics
| Fuzzy Sets in Business Management, Finance, and Economics |
| Autore | de Andres Sanchez Jorge |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (346 p.) |
| Soggetto topico |
Mathematics & science
Research & information: general |
| Soggetto non controllato |
adoption of environmental practices
assessment risk audit risk assessment audit team leader bitcoin blockchain Bonferroni means bonus-malus system brand attachment clustering techniques convenience stores correlation between fuzzy variables corruption normalization corruption perception cryptocurrencies Debreu-Farrell productivity index decision making decision-making economic models education level efficiency enhancement strategy entrepreneurial intention evaluation of specialists experience expert group experton theory extension principle family entrepreneurial background financial knowledge fintech forgotten effects theory Forgotten Effects Theory fsQCA fuzzy arithmetic fuzzy data analysis fuzzy logic Fuzzy Logic fuzzy Markov chain fuzzy number fuzzy numbers fuzzy quality function deployment fuzzy set qualitative comparative analysis fuzzy sets fuzzy stationary state fuzzy theory fuzzy transition probability gender genetic algorithm Hamming distance Harrod's growth household income human resource costs induced aggregation operators information technology support intention to use intuitionistic fuzzy sets knowledge systems Latin America linguistic variables manufacturing process mobility neuro-fuzzy assessment organizational learning capability OWA operator planification poverty policy prioritized aggregation operators public financial resources pythagorean membership recovery plan SDGs selection of quality methods size small- and medium-sized audit firms smart city smart transport STEM sustainability The Quintuple Helix of Innovation Model tourist destination competitiveness transparency transparent selection unified theory of acceptance and use of technology university ranking unsupervised pattern recognition |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557612703321 |
de Andres Sanchez Jorge
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fuzzy Sets, Fuzzy Logic and Their Applications 2020
| Fuzzy Sets, Fuzzy Logic and Their Applications 2020 |
| Autore | Voskoglou Michael |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (452 p.) |
| Soggetto topico |
Mathematics & science
Research & information: general |
| Soggetto non controllato |
alternative fixed point theorem
B-spline surface model function Bayesian probabilities bipolar fuzzy topology bipolar gradation of closedness bipolar gradation of openness bipolar gradation preserving map defuzzification distance measure dynamic random access memory embedding method entropy FAHP FCOPRAS FTOPSIS fuzzification fuzzy AHP fuzzy arithmetic fuzzy calculus fuzzy collaborative forecasting fuzzy difference equations fuzzy differential equations fuzzy implication fuzzy intersection fuzzy linear system fuzzy logic fuzzy logic (FL) fuzzy logic connectives fuzzy max-T algebra fuzzy measures fuzzy nonlinear systems fuzzy normed linear space fuzzy number fuzzy number vector fuzzy parametric form fuzzy relations: fuzzy sets fuzzy set fuzzy soft set fuzzy statistics fuzzy TOPSIS GEFS governance hexagonal fuzzy number homomorphism of graph products Hyers-Ulam stability i-octahedron ideal i-octahedron subgroupoid i-octahedron subring i-sup-property, i-octahedron subgroup inductive and deductive reasoning information measure interval eigenvector interval matrix interval-valued fuzzy competition graph interval-valued fuzzy neighbourhood graph interval-valued fuzzy p competition graph interval-valued m-step fuzzy competition graph intuitionistic fuzzy normed spaces law of importation least fuzzy negation linguistic terms for fuzzy variable ℒℳℱ?? Łukasiewicz triangular norm management system max-Łukasiewicz algebra max-min algebra max-min composition measure of non-compactness min-max composition mixed continuous-discrete model monotone measures monotone statistical parameters multi-fuzzy set multi-fuzzy soft set multidimensional fuzzy arithmetic neutrosophic set octahedron set ordering property parametric solvability partial consensus pexider type functional equation plithogenic set probability and statistics product spaces RDM fuzzy arithmetic Schauder fixed point theorem scientific method SEFS shopping mall site selection similarity measure similarity measure of ℒℳℱ?? site selection soft set strong interval eigenvector strongly generalized Hukuhara differentiability t-conditionality t-norm time value of money type-2 fuzzy set type-reduction α-migrativity |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557343903321 |
Voskoglou Michael
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Theory and Applications of Ordered Fuzzy Numbers [[electronic resource] ] : A Tribute to Professor Witold Kosiński / / edited by Piotr Prokopowicz, Jacek Czerniak, Dariusz Mikołajewski, Łukasz Apiecionek, Dominik Ślȩzak
| Theory and Applications of Ordered Fuzzy Numbers [[electronic resource] ] : A Tribute to Professor Witold Kosiński / / edited by Piotr Prokopowicz, Jacek Czerniak, Dariusz Mikołajewski, Łukasz Apiecionek, Dominik Ślȩzak |
| Autore | Łukasz Apiecionek |
| Edizione | [1st ed. 2017.] |
| Pubbl/distr/stampa | Springer Nature, 2017 |
| Descrizione fisica | 1 online resource (XVIII, 322 p. 156 illus., 106 illus. in color.) |
| Disciplina | 006.3 |
| Collana | Studies in Fuzziness and Soft Computing |
| Soggetto topico |
Computational intelligence
Control engineering Operations research Decision making Management science Computational Intelligence Control and Systems Theory Operations Research/Decision Theory Operations Research, Management Science |
| Soggetto non controllato |
fuzzy prediction models
uncertainty modeling trend processing propagation of uncertainty fuzzy arithmetic analysis defuzzyfication Kosinski’s fuzzy numbers |
| ISBN | 3-319-59614-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Foreword -- Memories of Professor Witold Kosiński -- Scientific Development -- Scientific and Academic Achievements (Part I) -- Scientific and Academic Achievements (Part II) -- Scientific Collaboration -- Teaching and Supervision -- Scientific and Social Services -- Personality and Memoires -- Acknowledgements -- Contents -- Part I Background of Fuzzy Set Theory -- 1 Introduction to Fuzzy Sets -- 1.1 Classic and Fuzzy Sets -- 1.2 Fuzzy Sets---Basic Definitions -- 1.3 Extension Principle -- 1.4 Fuzzy Relations -- 1.5 Cylindrical Extension and Projection of a Fuzzy Set -- 1.6 Fuzzy Numbers -- 1.7 Summary -- References -- 2 Introduction to Fuzzy Systems -- 2.1 Introduction -- 2.2 Fuzzy Conditional Rules -- 2.3 Approximate Reasoning -- 2.3.1 Compositional Rule of Inference -- 2.3.2 Approximate Reasoning with Knowledge Base -- 2.3.3 Fuzzification and Defuzzification -- 2.4 Basic Types of Fuzzy Systems -- 2.4.1 Mamdani--Assilan Fuzzy Model -- 2.4.2 Takagi--Sugeno--Kang Fuzzy System -- 2.4.3 Tsukamoto Fuzzy System -- 2.5 Summary -- References -- Part II Theory of Ordered Fuzzy Numbers -- 3 Ordered Fuzzy Numbers: Sources and Intuitions -- 3.1 Introduction -- 3.2 Problems with Calculations on Fuzzy Numbers -- 3.3 Related Work -- 3.4 Decomposition of Fuzzy Memberships -- 3.5 Idea of Ordered Fuzzy Numbers -- 3.6 Summary -- References -- 4 Ordered Fuzzy Numbers: Definitions and Operations -- 4.1 Introduction -- 4.2 The Ordered Fuzzy Number Model -- 4.3 Basic Notions for OFNs -- 4.3.1 Standard Representation of OFNs -- 4.3.2 OFN Support -- 4.3.3 OFN Membership Function -- 4.3.4 Real Numbers as OFN Singletons -- 4.4 Improper OFNs -- 4.5 Basic Operations on OFNs -- 4.5.1 Addition and Subtraction -- 4.5.2 Multiplication and Division -- 4.5.3 General Model of Operations -- 4.5.4 Solving Equations -- 4.6 Interpretations of OFNs.
4.6.1 Direction as a Trend -- 4.6.2 Validity of Operations -- 4.6.3 The Meaning of Improper OFNs -- 4.7 Summary and Further Intuitions -- References -- 5 Processing Direction with Ordered Fuzzy Numbers -- 5.1 Introduction -- 5.2 Direction Measurement Tool -- 5.2.1 The PART Function -- 5.2.2 The Direction Determinant -- 5.3 Compatibility Between OFNs -- 5.4 Inference Sensitive to Direction -- 5.4.1 Directed Inference Operation -- 5.4.2 Examples -- 5.5 Aggregation of OFNs -- 5.5.1 The Aggregation's Basic Properties -- 5.5.2 Arithmetic Mean Directed Aggregation -- 5.5.3 Aggregation for Premise Parts of Fuzzy Rules -- 5.6 Summary -- References -- 6 Comparing Fuzzy Numbers Using Defuzzificators on OFN Shapes -- 6.1 Introduction -- 6.2 Formal Approach to the Problem -- 6.3 Defuzzification Methods -- 6.3.1 Defuzzification Methods for OFN -- 6.4 Definition of Golden Ratio Defuzzification Operator -- 6.4.1 Golden Ratio for OFN -- 6.5 Golden Ratio -- 6.6 Defuzzification Conditions for GR -- 6.6.1 Normalization -- 6.6.2 Restricted Additivity -- 6.6.3 Homogeneity -- 6.7 Definition of Mandala Factor Defuzzification Operator -- 6.8 Mandala Factor -- 6.9 Defuzzification Conditions for MF -- 6.9.1 Normalization -- 6.9.2 Restricted Additivity -- 6.9.3 Homogeneity -- 6.10 Catalogue of the Shapes of Numbers in OFN Notation -- 6.11 Conclusion -- References -- 7 Two Approaches to Fuzzy Implication -- 7.1 Introduction -- 7.2 Lattice Structure and Implications on SOFNs -- 7.2.1 Step-Ordered Fuzzy Numbers -- 7.2.2 Lattice on mathcalRK -- 7.2.3 Complements and Negation on calN -- 7.2.4 Fuzzy Implication on BSOFN -- 7.2.5 Applications -- 7.3 Metasets -- 7.3.1 The Binary Tree T and the Boolean Algebra mathfrakB -- 7.3.2 General Definition of Metaset -- 7.3.3 Interpretations of Metasets -- 7.3.4 Forcing -- 7.3.5 Set-Theoretic Relations for Metasets. 7.3.6 Applications of Metasets -- 7.3.7 Classical and Fuzzy Implication -- 7.4 Conclusions and Further Research -- References -- Part III Examples of Applications -- 8 OFN Capital Budgeting Under Uncertainty and Risk -- 8.1 Introduction -- 8.2 Ordered Fuzzy Numbers -- 8.3 Classic Capital Budgeting Methods -- 8.4 Fuzzy Approach to the Discount Methods -- 8.5 Computational Example of the Investment Project -- 8.6 Summary -- References -- 9 Input-Output Model Based on Ordered Fuzzy Numbers -- 9.1 Introduction -- 9.2 Input-Output Analysis -- 9.3 Example of Application of OFNs in the Leontief Model -- 9.4 Conclusions -- References -- 10 Ordered Fuzzy Candlesticks -- 10.1 Introduction -- 10.2 Ordered Fuzzy Candlesticks -- 10.3 Volume and Spread -- 10.3.1 Volume -- 10.3.2 Spread -- 10.4 Ordered Fuzzy Candlesticks in Technical Analysis -- 10.4.1 Ordered Fuzzy Technical Analysis Indicators -- 10.4.2 Ordered Fuzzy Candlestick as Technical Analysis Indicator -- 10.5 Ordered Fuzzy Time Series Models -- 10.6 Conclusion and Future Works -- References -- 11 Detecting Nasdaq Composite Index Trends with OFNs -- 11.1 Introduction -- 11.2 Application of OFN Notation for the Fuzzy Observation of NASDAQ Composite -- 11.3 Ordered Fuzzy Number Formulas -- 11.4 Conclusions -- References -- 12 OFNAnt Method Based on TSP Ant Colony Optimization -- 12.1 Introduction -- 12.2 Application of Ant Colony Algorithms in Searching for the Optimal Route -- 12.3 OFNAnt, a New Ant Colony Algorithm -- 12.4 Experiment -- 12.4.1 Experiment Execution Method -- 12.4.2 Software Used for Experiment -- 12.4.3 Experimental Data -- 12.5 Results of Experiment -- 12.6 Summary and Conclusions -- References -- 13 A New OFNBee Method as an Example of Fuzzy Observance Applied for ABC Optimization -- 13.1 Introduction -- 13.2 ABC (Artificial Bee Colony) Model -- 13.3 Selected OFN Issues. 13.4 New Hybrid OFNBee Method -- 13.5 Experimental Results -- 13.6 Conclusion -- References -- 14 Fuzzy Observation of DDoS Attack -- 14.1 Introduction -- 14.2 DDoS Attack Description and Recognition -- 14.3 The Idea of Attack Recognition and Prevention -- 14.4 Attack Observation Using OFNs -- 14.5 Experiment Test Results -- 14.5.1 Test Description -- 14.5.2 Attack Detection Using Proposed Method -- 14.6 Conclusions-Method Comparision -- References -- 15 Fuzzy Control for Secure TCP Transfer -- 15.1 Introduction -- 15.2 Multipath TCP -- 15.3 Multipath TCP Schedulers -- 15.3.1 Multipath TCP Standard Scheduler -- 15.3.2 Multipath TCP Secure Scheduler -- 15.3.3 Multipath TCP Scheduler with OFN Usage -- 15.3.4 OFN for Problem Detection -- 15.4 OFN Scheduler Algorithm -- 15.5 Simulation Test Results -- 15.6 Conclusions -- References -- 16 Fuzzy Numbers Applied to a Heat Furnace Control -- 16.1 Introduction -- 16.2 Selected Definitions -- 16.2.1 The Essence of Ordered Fuzzy Numbers -- 16.2.2 Fuzzy Controller -- 16.2.3 Control of the Stove on Solid Fuel -- 16.3 Classic Fuzzy Controller -- 16.4 The Controller for the OFNs -- 16.4.1 Directed OFN as a Combustion Trend -- 16.5 Modeling Trend in the Inference Process -- 16.6 Conclusions -- References -- 17 Analysis of Temporospatial Gait Parameters -- 17.1 Introduction -- 17.2 Methods -- 17.2.1 Subjects -- 17.2.2 Methods -- 17.2.3 Statistical Analysis -- 17.2.4 Fuzzy-Based Tool for Gait Assessment -- 17.2.5 Main Ideas of the OFN Model -- 17.2.6 OFN Model in Gait Assessment -- 17.3 Results -- 17.4 Discussion -- 17.5 Conclusions -- References -- 18 OFN-Based Brain Function Modeling -- 18.1 Introduction -- 18.2 State of the Art -- 18.2.1 Theory -- 18.2.2 Modeling Complex Ideas with Fuzzy Systems -- 18.2.3 Clinical Practice -- 18.2.4 Models for Linking Hypotheses and Experimental Studies -- 18.3 Concepts. 18.3.1 Data Ladder -- 18.3.2 Models of a Single Neuron -- 18.3.3 Models of Biologically Relevant Neural Networks -- 18.3.4 Models of Human Behavior -- 18.4 Traditional versus Fuzzy Approach -- 18.5 OFN as an Alternative Approach to Fuzziness -- 18.6 Patterns and Examples -- 18.6.1 Intuitive Modeling of the Complex Functions -- 18.6.2 Improving Policy Gradient Method -- 18.6.3 Modeling Learning Rate with the OFNs -- 18.7 Discussion -- 18.7.1 Results of Other Scientists -- 18.7.2 Limitations of Our Approach and Directions for Further Research -- 18.8 Conclusions -- References. |
| Record Nr. | UNINA-9910231246403321 |
Łukasz Apiecionek
|
||
| Springer Nature, 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||