top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Innovative Topologies and Algorithms for Neural Networks
Innovative Topologies and Algorithms for Neural Networks
Autore Xibilia Maria Gabriella
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (198 p.)
Soggetto topico Information technology industries
Soggetto non controllato facial image analysis
facial nerve paralysis
deep convolutional neural networks
image classification
Chinese text classification
long short-term memory
convolutional neural network
Arabic named entity recognition
bidirectional recurrent neural network
GRU
LSTM
natural language processing
word embedding
CNN
object detection network
attention mechanism
feature fusion
LSTM-CRF model
elements recognition
linguistic features
POS syntactic rules
action recognition
fused features
3D convolution neural network
motion map
long short-term-memory
tooth-marked tongue
gradient-weighted class activation maps
ship identification
fully convolutional network
embedded deep learning
scalability
gesture recognition
human computer interaction
alternative fusion neural network
deep learning
sentiment attention mechanism
bidirectional gated recurrent unit
Internet of Things
convolutional neural networks
graph partitioning
distributed systems
resource-efficient inference
pedestrian attribute recognition
graph convolutional network
multi-label learning
autoencoders
long-short-term memory networks
convolution neural Networks
object recognition
sentiment analysis
text recognition
IoT (Internet of Thing) systems
medical applications
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557553903321
Xibilia Maria Gabriella  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Learning to Understand Remote Sensing Images . Volume 2
Learning to Understand Remote Sensing Images . Volume 2
Autore Wang Qi
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (363 pages)
Soggetto non controllato metadata
image classification
sensitivity analysis
ROI detection
residual learning
image alignment
adaptive convolutional kernels
Hough transform
class imbalance
land surface temperature
inundation mapping
multiscale representation
object-based
convolutional neural networks
scene classification
morphological profiles
hyperedge weight estimation
hyperparameter sparse representation
semantic segmentation
vehicle classification
flood
Landsat imagery
target detection
multi-sensor
building damage detection
optimized kernel minimum noise fraction (OKMNF)
sea-land segmentation
nonlinear classification
land use
SAR imagery
anti-noise transfer network
sub-pixel change detection
Radon transform
segmentation
remote sensing image retrieval
TensorFlow
convolutional neural network
particle swarm optimization
optical sensors
machine learning
mixed pixel
optical remotely sensed images
object-based image analysis
very high resolution images
single stream optimization
ship detection
ice concentration
online learning
manifold ranking
dictionary learning
urban surface water extraction
saliency detection
spatial attraction model (SAM)
quality assessment
Fuzzy-GA decision making system
land cover change
multi-view canonical correlation analysis ensemble
land cover
semantic labeling
sparse representation
dimensionality expansion
speckle filters
hyperspectral imagery
fully convolutional network
infrared image
Siamese neural network
Random Forests (RF)
feature matching
color matching
geostationary satellite remote sensing image
change feature analysis
road detection
deep learning
aerial images
image segmentation
aerial image
multi-sensor image matching
HJ-1A/B CCD
endmember extraction
high resolution
multi-scale clustering
heterogeneous domain adaptation
hard classification
regional land cover
hypergraph learning
automatic cluster number determination
dilated convolution
MSER
semi-supervised learning
gate
Synthetic Aperture Radar (SAR)
downscaling
conditional random fields
urban heat island
hyperspectral image
remote sensing image correction
skip connection
ISPRS
spatial distribution
geo-referencing
Support Vector Machine (SVM)
very high resolution (VHR) satellite image
classification
ensemble learning
synthetic aperture radar
conservation
convolutional neural network (CNN)
THEOS
visible light and infrared integrated camera
vehicle localization
structured sparsity
texture analysis
DSFATN
CNN
image registration
UAV
unsupervised classification
SVMs
SAR image
fuzzy neural network
dimensionality reduction
GeoEye-1
feature extraction
sub-pixel
energy distribution optimizing
saliency analysis
deep convolutional neural networks
sparse and low-rank graph
hyperspectral remote sensing
tensor low-rank approximation
optimal transport
SELF
spatiotemporal context learning
Modest AdaBoost
topic modelling
multi-seasonal
Segment-Tree Filtering
locality information
GF-4 PMS
image fusion
wavelet transform
hashing
machine learning techniques
satellite images
climate change
road segmentation
remote sensing
tensor sparse decomposition
Convolutional Neural Network (CNN)
multi-task learning
deep salient feature
speckle
canonical correlation weighted voting
fully convolutional network (FCN)
despeckling
multispectral imagery
ratio images
linear spectral unmixing
hyperspectral image classification
multispectral images
high resolution image
multi-objective
convolution neural network
transfer learning
1-dimensional (1-D)
threshold stability
Landsat
kernel method
phase congruency
subpixel mapping (SPM)
tensor
MODIS
GSHHG database
compressive sensing
ISBN 3-03897-699-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367755503321
Wang Qi  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Learning to Understand Remote Sensing Images . Volume 1
Learning to Understand Remote Sensing Images . Volume 1
Autore Wang Qi
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (414 pages)
Soggetto non controllato metadata
image classification
sensitivity analysis
ROI detection
residual learning
image alignment
adaptive convolutional kernels
Hough transform
class imbalance
land surface temperature
inundation mapping
multiscale representation
object-based
convolutional neural networks
scene classification
morphological profiles
hyperedge weight estimation
hyperparameter sparse representation
semantic segmentation
vehicle classification
flood
Landsat imagery
target detection
multi-sensor
building damage detection
optimized kernel minimum noise fraction (OKMNF)
sea-land segmentation
nonlinear classification
land use
SAR imagery
anti-noise transfer network
sub-pixel change detection
Radon transform
segmentation
remote sensing image retrieval
TensorFlow
convolutional neural network
particle swarm optimization
optical sensors
machine learning
mixed pixel
optical remotely sensed images
object-based image analysis
very high resolution images
single stream optimization
ship detection
ice concentration
online learning
manifold ranking
dictionary learning
urban surface water extraction
saliency detection
spatial attraction model (SAM)
quality assessment
Fuzzy-GA decision making system
land cover change
multi-view canonical correlation analysis ensemble
land cover
semantic labeling
sparse representation
dimensionality expansion
speckle filters
hyperspectral imagery
fully convolutional network
infrared image
Siamese neural network
Random Forests (RF)
feature matching
color matching
geostationary satellite remote sensing image
change feature analysis
road detection
deep learning
aerial images
image segmentation
aerial image
multi-sensor image matching
HJ-1A/B CCD
endmember extraction
high resolution
multi-scale clustering
heterogeneous domain adaptation
hard classification
regional land cover
hypergraph learning
automatic cluster number determination
dilated convolution
MSER
semi-supervised learning
gate
Synthetic Aperture Radar (SAR)
downscaling
conditional random fields
urban heat island
hyperspectral image
remote sensing image correction
skip connection
ISPRS
spatial distribution
geo-referencing
Support Vector Machine (SVM)
very high resolution (VHR) satellite image
classification
ensemble learning
synthetic aperture radar
conservation
convolutional neural network (CNN)
THEOS
visible light and infrared integrated camera
vehicle localization
structured sparsity
texture analysis
DSFATN
CNN
image registration
UAV
unsupervised classification
SVMs
SAR image
fuzzy neural network
dimensionality reduction
GeoEye-1
feature extraction
sub-pixel
energy distribution optimizing
saliency analysis
deep convolutional neural networks
sparse and low-rank graph
hyperspectral remote sensing
tensor low-rank approximation
optimal transport
SELF
spatiotemporal context learning
Modest AdaBoost
topic modelling
multi-seasonal
Segment-Tree Filtering
locality information
GF-4 PMS
image fusion
wavelet transform
hashing
machine learning techniques
satellite images
climate change
road segmentation
remote sensing
tensor sparse decomposition
Convolutional Neural Network (CNN)
multi-task learning
deep salient feature
speckle
canonical correlation weighted voting
fully convolutional network (FCN)
despeckling
multispectral imagery
ratio images
linear spectral unmixing
hyperspectral image classification
multispectral images
high resolution image
multi-objective
convolution neural network
transfer learning
1-dimensional (1-D)
threshold stability
Landsat
kernel method
phase congruency
subpixel mapping (SPM)
tensor
MODIS
GSHHG database
compressive sensing
ISBN 3-03897-685-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367755603321
Wang Qi  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing Data Compression
Remote Sensing Data Compression
Autore Lukin Vladimir
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (366 p.)
Soggetto topico Technology: general issues
Soggetto non controllato on-board data compression
CCSDS 123.0-B-2
near-lossless hyperspectral image compression
hyperspectral image coding
graph filterbanks
integer-to-integer transforms
graph signal processing
compact data structure
quadtree
k2-tree
k2-raster
DACs
3D-CALIC
M-CALIC
hyperspectral images
fully convolutional network
semantic segmentation
spectral image
tensor decomposition
HEVC
intra coding
JPEG 2000
high bit-depth compression
multispectral satellite images
crop classification
Landsat-8
Sentinel-2
Elias codes
Simple9
Simple16
PForDelta
Rice codes
hyperspectral scenes
hyperspectral image
lossy compression
real time
FPGA
PCA
JPEG2000
EBCOT
multispectral
hyperspectral
CCSDS
FAPEC
data compression
transform
hyperspectral imaging
on-board processing
GPU
real-time performance
UAV
parallel computing
remote sensing
image quality
image classification
visual quality metrics
spectral–spatial feature
multispectral image compression
partitioned extraction
group convolution
rate-distortion
compressed sensing
invertible projection
coupled dictionary
singular value
task-driven learning
on board compression
transform coding
learned compression
neural networks
variational autoencoder
complexity
real-time compression
on-board compression
real-time transmission
UAVs
compressive sensing
synthetic aperture sonar
underwater sonar imaging
remote sensing data compression
lossless compression
compression impact
computational complexity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557383103321
Lukin Vladimir  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing of the Oceans : Blue Economy and Marine Pollution
Remote Sensing of the Oceans : Blue Economy and Marine Pollution
Autore Buono Andrea
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (224 p.)
Soggetto topico Research & information: general
Soggetto non controllato ocean modeling
counter-flow
vertical migration
Kuroshio intrusion
marine economy
storm surge
tropical cyclone size (TC size)
ideal test
marine-economic effects
Northern East China Sea (NECS)
surface currents
HF radar
eddy detection algorithms
general compact polarimetry
hybrid dual-polarization
oil spill discrimination
target decomposition
ocean environment
oil spill
Synthetic Aperture Radar
polarimetric decomposition
superpixel
convolutional neural networks
unmanned-aerial-vehicles
UAVs
anthropogenic-marine-debris
AMD
beached-marine-litter
BML
marine-protected-areas
MPA
ortho-photo
marine-pollution
accumulation-rate
synthetic aperture radar (SAR)
moving vessel
multicomponent polynomial phase signal(mc-PPS)
adaptive joint time-frequency (AJTF) decomposition
co-evolutionary particle swarm optimization
airborne HF/VHF radar
sea echo
mathematical model
radar cross section
marine raft aquaculture
Sentinel-1
nonsubsampled contourlet transform
semantic segmentation
fully convolutional network
SAR images
shoreline extraction
geometric active contour model
SAR
sentinel-1
low-backscattering areas
azimuth autocorrelation function
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Remote Sensing of the Oceans
Record Nr. UNINA-9910557667403321
Buono Andrea  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui