top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Remote Sensing for Global Forest Monitoring
Advances in Remote Sensing for Global Forest Monitoring
Autore Tomppo Erkki
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (352 p.)
Soggetto topico Environmental economics
Research and information: general
Soggetto non controllato activity data
bootstrapping
boreal forest
Bowen ratio
C-band
canopy height model
carbon flux
classification
compatible equation
constrained neighbor interpolation
CRFasRNN
CUSUM
data assessment
data fusion
deep learning
deforestation
degradation
digital surface model
digital terrain model
drought
dual-FCN8s
EBLUP
emissions factor
error propagation
error-in-variable modeling
FCN8s
field measured LAI
forest area change
forest cover
forest disturbance mapping
forest monitoring
forest structure change
forest type
genetic algorithm
Germany
GF2
improved k-NN
inconsistency
IPCC good practice guidelines
La Rioja
land use land cover
Landsat
leave-one-out cross-validation
LiDAR
logistic regression
machine-learning
magnitude
multinomial logistic regression
multitemporal LiDAR and stand-level estimates
n/a
near real-time monitoring
nonlinear seemingly unrelated regression
NRT monitoring
ordinary neighbor interpolation
Picea crassifolia Kom
point cloud density
random forest
random forests
remotely sensed LAI
removals factor
savanna
Sentinel 2
Sentinel-1
Sentinel-2
small area estimation
South Africa
state space models
statistical estimator
stereo imagery
support vector machine
synthetic aperture radar
temperate forest
temporal dynamics
time series satellite data
tropical forest
tropical peat
uncertainty
uncertainty evaluation
validation
windstorm damage
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557338103321
Tomppo Erkki  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
Autore Aranha José
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (276 p.)
Soggetto topico Geography
Research and information: general
Soggetto non controllato above-ground biomass
aboveground biomass
AGB estimation and mapping
allometric equation
ALOS DSM
ALOS-2 L band SAR
bark roughness
bioenergy
biomass density
biomass estimation
DBH
diameter at breast height
ecosystem services
forest AGC estimation
forest biomass estimation
forest growing stock volume
forest inventory data
forest succession
forest type
GEOMON
GIS
individual tree detection
landsat
Landsat 8 OLI
Landsat dataset
leaf area index
LiDAR
machine learning
machine learning algorithms
mangroves
map quality
multiple ES interactions
multisource remote sensing
nondestructive method
norway spruce
ordinary kriging
Pinus massoniana plantations
plant area index
random forest
remote sensing
seasonal images
sentinel 2
Sentinel-1 C band SAR
Sentinel-2 MSI
Sentinel-2A
shrubs biomass
spatiotemporal evolution
SPOT6 imagery
stand volume
stepwise regression
subtropical forest
subtropical forests
support vector machine for regression
synergy
terrestrial laser scanning
trade-off
tree height
UAV LiDAR
urban vegetation
valley basin
variable selection
vegetation indices
WorldView-2
Xuzhou
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557474803321
Aranha José  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Physiological Responses to Abiotic and Biotic Stress in Forest Trees / Andrea Polle, Heinz Rennenberg
Physiological Responses to Abiotic and Biotic Stress in Forest Trees / Andrea Polle, Heinz Rennenberg
Autore Polle Andrea
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (294 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato pure stands
ion relation
Heterobasidion annosum
salicylic acid
antioxidant enzymes
antioxidant activity
Luquasorb
intrinsic water-use efficiency
Greece
Pinus koraiensis Sieb. et Zucc
ion homeostasis
photosynthesis
Pinus massoniana
Stockosorb
water relations
Norway spruce
rubber tree
hydrophilic polymers
drought stress
ion relationships
Carpinus betulus
tree rings
N nutrition
disturbance
Populus simonii Carr. (poplar)
infection
subcellular localization
basal area increment
mixed stands
photosynthetic responses
Aleppo pine
water potential
elevation gradient
living cell
physiological response
antioxidant enzyme activity
ion contents
signal network
expression
soil N
GA-signaling pathway
differentially expressed genes
Ca2+ signal
climate
ecophysiology
Robinia pseudoacacia L.
Heterobasidion parviporum
mid-term
plant tolerance
canopy conductance
DELLA
tapping panel dryness
osmotic adjustment substances
abiotic stress
wood formation
malondialdehyde
salinity treatments
organic osmolytes
bamboo forest
non-structural carbohydrate
Abies alba Mill
tree
salt stress
Populus euphratica
proline
nutrition
Carpinus turczaninowii
plasma membrane Ca2+ channels
gene regulation
pathogen
TCP
forest type
functional analysis
Fraxinus mandshurica Rupr
long-term drought
defense response
cold stress
silicon fertilization
gas exchange
Fagus sylvatica L.
glutaredoxin
water availability
24-epiBL application
Konjac glucomannan
leaf properties
reactive oxygen species
sap flow
?13C
salinity
morphological indices
chloroplast ultrastructure
Moso Bamboo (Phyllostachys edulis)
drought
soluble sugar
molecular cloning
starch
growth
ISBN 9783039215157
3039215159
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367755303321
Polle Andrea  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui