Advances in Remote Sensing for Global Forest Monitoring
| Advances in Remote Sensing for Global Forest Monitoring |
| Autore | Tomppo Erkki |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (352 p.) |
| Soggetto topico |
Environmental economics
Research and information: general |
| Soggetto non controllato |
activity data
bootstrapping boreal forest Bowen ratio C-band canopy height model carbon flux classification compatible equation constrained neighbor interpolation CRFasRNN CUSUM data assessment data fusion deep learning deforestation degradation digital surface model digital terrain model drought dual-FCN8s EBLUP emissions factor error propagation error-in-variable modeling FCN8s field measured LAI forest area change forest cover forest disturbance mapping forest monitoring forest structure change forest type genetic algorithm Germany GF2 improved k-NN inconsistency IPCC good practice guidelines La Rioja land use land cover Landsat leave-one-out cross-validation LiDAR logistic regression machine-learning magnitude multinomial logistic regression multitemporal LiDAR and stand-level estimates n/a near real-time monitoring nonlinear seemingly unrelated regression NRT monitoring ordinary neighbor interpolation Picea crassifolia Kom point cloud density random forest random forests remotely sensed LAI removals factor savanna Sentinel 2 Sentinel-1 Sentinel-2 small area estimation South Africa state space models statistical estimator stereo imagery support vector machine synthetic aperture radar temperate forest temporal dynamics time series satellite data tropical forest tropical peat uncertainty uncertainty evaluation validation windstorm damage |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557338103321 |
Tomppo Erkki
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
| Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass |
| Autore | Aranha José |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (276 p.) |
| Soggetto topico |
Geography
Research and information: general |
| Soggetto non controllato |
above-ground biomass
aboveground biomass AGB estimation and mapping allometric equation ALOS DSM ALOS-2 L band SAR bark roughness bioenergy biomass density biomass estimation DBH diameter at breast height ecosystem services forest AGC estimation forest biomass estimation forest growing stock volume forest inventory data forest succession forest type GEOMON GIS individual tree detection landsat Landsat 8 OLI Landsat dataset leaf area index LiDAR machine learning machine learning algorithms mangroves map quality multiple ES interactions multisource remote sensing nondestructive method norway spruce ordinary kriging Pinus massoniana plantations plant area index random forest remote sensing seasonal images sentinel 2 Sentinel-1 C band SAR Sentinel-2 MSI Sentinel-2A shrubs biomass spatiotemporal evolution SPOT6 imagery stand volume stepwise regression subtropical forest subtropical forests support vector machine for regression synergy terrestrial laser scanning trade-off tree height UAV LiDAR urban vegetation valley basin variable selection vegetation indices WorldView-2 Xuzhou |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557474803321 |
Aranha José
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Physiological Responses to Abiotic and Biotic Stress in Forest Trees / Andrea Polle, Heinz Rennenberg
| Physiological Responses to Abiotic and Biotic Stress in Forest Trees / Andrea Polle, Heinz Rennenberg |
| Autore | Polle Andrea |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (294 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
pure stands
ion relation Heterobasidion annosum salicylic acid antioxidant enzymes antioxidant activity Luquasorb intrinsic water-use efficiency Greece Pinus koraiensis Sieb. et Zucc ion homeostasis photosynthesis Pinus massoniana Stockosorb water relations Norway spruce rubber tree hydrophilic polymers drought stress ion relationships Carpinus betulus tree rings N nutrition disturbance Populus simonii Carr. (poplar) infection subcellular localization basal area increment mixed stands photosynthetic responses Aleppo pine water potential elevation gradient living cell physiological response antioxidant enzyme activity ion contents signal network expression soil N GA-signaling pathway differentially expressed genes Ca2+ signal climate ecophysiology Robinia pseudoacacia L. Heterobasidion parviporum mid-term plant tolerance canopy conductance DELLA tapping panel dryness osmotic adjustment substances abiotic stress wood formation malondialdehyde salinity treatments organic osmolytes bamboo forest non-structural carbohydrate Abies alba Mill tree salt stress Populus euphratica proline nutrition Carpinus turczaninowii plasma membrane Ca2+ channels gene regulation pathogen TCP forest type functional analysis Fraxinus mandshurica Rupr long-term drought defense response cold stress silicon fertilization gas exchange Fagus sylvatica L. glutaredoxin water availability 24-epiBL application Konjac glucomannan leaf properties reactive oxygen species sap flow ?13C salinity morphological indices chloroplast ultrastructure Moso Bamboo (Phyllostachys edulis) drought soluble sugar molecular cloning starch growth |
| ISBN |
9783039215157
3039215159 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910367755303321 |
Polle Andrea
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||