Forest Fire Risk Prediction
| Forest Fire Risk Prediction |
| Autore | Nolan Rachael |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (235 p.) |
| Soggetto topico |
Biology, life sciences
Forestry & related industries Research & information: general |
| Soggetto non controllato |
acid rain
aerosol alien pathogen allochthonous species biomass burning canopy bulk density China climate change critical LFMC threshold crown fire Cupressus sempervirens direct estimation disease drought drying tests epicormic resprouter eucalyptus fire behavior fire danger fire danger rating fire management fire modeling fire regime fire risk fire season fire severity fire size fire weather fire weather patterns flammability flammability feedbacks foliar moisture content forest fire forest fire driving factors forest fire management forest fire occurrence forest/grassland fire fuel moisture fuel moisture content fuels FWI system humidity diffusion coefficients introduced fungus leaf water potential machine learning mass loss calorimeter meteorological factor regression MNI modeling moisture content n/a occurrence of forest fire plant traits PM2.5 Portugal prediction accuracy prescribed burning radiative transfer model random forest RCP remote sensing Seiridium cardinale senescence southwest China SSR temperate forest time lag variable importance vulnerability to wildfires wildfire |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557387103321 |
Nolan Rachael
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hyperspectral Imaging and Applications
| Hyperspectral Imaging and Applications |
| Autore | Chang Chein-I |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (632 p.) |
| Soggetto topico |
History of engineering & technology
Technology: general issues |
| Soggetto non controllato |
90° yaw imaging
adaptive window Africa agroforestry AHS airborne laser scanning algebraic multigrid methods anomaly detection AVIRIS band expansion process (BEP) band grouping band selection band selection (BS) band subset selection (BSS) biodiversity class imbalance classification composite kernel constrained energy minimization constrained energy minimization (CEM) correlation band expansion process (CBEP) data fusion data integration data unmixing data-guided constraints deep belief networks deep learning deep pipelined background statistics Dunhuang site endmember extraction ensemble learning evenness fire severity Gram-Schmidt orthogonalization graph hashing ensemble hierarchical feature high-level synthesis HyMap hyperspectral hyperspectral classification hyperspectral compression hyperspectral detection hyperspectral image hyperspectral image (HSI) hyperspectral image classification hyperspectral imagery hyperspectral images (HSIs) hyperspectral imaging hyperspectral pansharpening hyperspectral unmixing image enhancement image fusion imaging spectroscopy in situ measurements intrinsic image decomposition irradiance-based method iterative algorithm iterative CEM (ICEM) KSVD label propagation linearly constrained minimum variance (LCMV) local abundance local summation RX detector (LS-RXD) lossy compression machine learning mineral mapping minimum noise fraction multiscale spatial information multiscale union regions adaptive sparse representation (MURASR) nonlinear band expansion (NBE) nonnegative matrix factorization nuclear norm on-board compression optical spectral region orthogonal projections Otsu's method panchromatic panchromatic image parallel processing peatland progressive sample processing (PSP) prototype space raw material real-time processing recursive anomaly detection reflectance-based method remote sensing rolling guidance filtering (RGF) rotation forest semi-supervised learning semi-supervised local discriminant analysis sequential LCMV-BSS (SQ LCMV-BSS) sliding window sparse coding sparse unmixing sparseness spectral mixture analysis spectral variability spectral-spatial classification sprout detection structure tensor successive LCMV-BSS (SC LCMV-BSS) superpixel SVM target detection terrestrial hyperspectral imaging texture feature enhancement thermal infrared spectral region tree species tree-based ensemble vegetation type vicarious calibration vineyard water stress weighted fusion weighted least squares filter |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910585941603321 |
Chang Chein-I
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||