top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Neural Networks and Evolutionary Computation in Remote Sensing
Artificial Neural Networks and Evolutionary Computation in Remote Sensing
Autore Kavzoglu Taskin
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (256 p.)
Soggetto topico Research and information: general
Soggetto non controllato aerial images
AI on the edge
artificial neural networks
China
classification
classification ensemble
CNN
CNNs
convolutional neural network
convolutional neural networks
convolutional neural networks (CNNs)
deep learning
dense network
digital terrain analysis
dilated convolutional network
earth observation
end-to-end detection
Faster RCNN
feature fusion
Feicheng
few-shot learning
Gaofen 6
Gaofen-2 imagery
geographic information system (GIS)
hyperspectral image classification
hyperspectral images
image downscaling
image segmentation
land-use
LiDAR
light detection and ranging
machine learning
mask R-CNN
mask regional-convolutional neural networks
microsat
mission
mixed forest
mixed-inter nonlinear programming
model generalization
multi-label segmentation
multi-scale feature fusion
nanosat
on-board
optical remote sensing images
post-processing
quadruplet loss
remote sensing
resource extraction
semantic features
semantic segmentation
Sentinel-2
ship detection
single shot multi-box detector (SSD)
spatial distribution
SRGAN
statistical features
super-resolution
superstructure optimization
Tai'an
transfer learning
unmanned aerial vehicles
winter wheat
You Look Only Once-v3 (YOLO-v3)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557148403321
Kavzoglu Taskin  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning Methods with Noisy, Incomplete or Small Datasets
Machine Learning Methods with Noisy, Incomplete or Small Datasets
Autore Solé-Casals Jordi
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (316 p.)
Soggetto topico Information technology industries
Soggetto non controllato artificial intelligence
Artificial Neural Network
auto-encoders
binarization
COVID19
data augmentation
data science
deep learning
dengue
digital-gap
Discrete Cosine Transform (DCT)
Discrete Fourier Transform (DFT)
Discriminant Analysis
educational data
empirical mode decomposition
episodic memory
Extreme Learning Machines (ELM)
feature elimination
feature engineering
feature extraction
feature importance
feature selection
few-shot learning
functional connectivity
functional magnetic resonance imaging
gender-gap
graph model
hierarchical clustering
image generation
imperfect dataset
independent component analysis
intelligent decision support
Internet of Things (IoT)
label correlations
machine learning
machine translation
Markov Chain Monte Carlo (MCMC)
multifrequency impedance
neural network
noise elimination
noisy datasets
non-negative matrix factorization
ontology
open contours
optimization
pairwise evaluation
Parkinson's disease
permutation-variable importance
persistent entropy
policy-making support
prediction
preprocessing
recurrent neural network
root canal measurement
semi-supervised learning
shadow detection
shadow estimation
similarly shaped fish species
single sample per person
small data-sets
small datasets
small sample learning
smart building
social vulnerability
sound event detection
space consistency
sparse representations
support-vector machine
tensor completion
tensor decomposition
topological data analysis
ultrasound images
weighted interpolation map
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557324603321
Solé-Casals Jordi  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Sensor Technologies for IoT
Smart Sensor Technologies for IoT
Autore Brida Peter
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (270 p.)
Soggetto topico Technology: general issues
Soggetto non controllato 5G
ACR
bit repair (B-REP)
Bluetooth
classification
clustering
convolutional neural network
data classification
dead reckoning
depth-based routing
detection
DRONET
electromagnetic scanning
energy-efficient
failure repair
Fast Reroute
few-shot learning
fingerprinting
free space optics
GNSS-RTK positioning
H.264/AVC
H.265/HEVC
human activity recognition
IMU
indoor tracking
Internet of Things
internet of things (IoT)
Internet of Things (IoT)
IoT
IoT system
localization
location-independent
magnetometer
MANET
measurement
meta learning
metric learning
mm-wave radars
mobile localization
Multicast Repair (M-REP)
multilayered network model
multiwavelength laser
n/a
optical code division multiple access (OCDMA)
optical sensors
particle filter
point cloud
position detection
positioning
pressure sensor
QoE
quality of service differentiation
ReRoute
smart sensor
smart sensors
subjective assessment
traffic
underwater wireless sensor network
vehicle
Velostat
vibration sensing
Wi-Fi
Wi-Fi sensing
wireless optical networks
wireless technology
WSN
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557599903321
Brida Peter  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui