top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications
ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications
Autore Tadono Takeo
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (240 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Environmental science, engineering & technology
Soggetto non controllato Sentinel-1
ALOS/PALSAR-2
land subsidence
accuracy assessment
Alexandria City
Egypt
local climate zone
random forest
feature importance
land surface temperature
grid cells
Sentinel-2
PALSAR-2
ASTER
soil moisture
ALOS-2
GA-BP
water cloud model
L-band
SAR
backscattering
soil moisture content
LAI
HH and HV polarization
flood
NoBADI
Florida
Hurricane Irma
synthetic aperture radar
polarimetric radar
co-polarized phase difference
radar scattering
vegetation
radar applications
agriculture
leaf area index
leave-one-out cross-validation
oil palm
radar vegetation index
vegetation descriptors
ecosystem carbon cycle
L-band SAR
vegetation index
random forest regression
plantation
permafrost
InSAR
Qinghai-Tibet Plateau
ALOS
thermal melting collapse
Sentinel-1A
SBAS-InSAR
heavy forest area
potential landslide identification
SAR-based landslide detection
Growing Split-Based Approach (GSBA)
Hokkaido landslide
Putanpunas landslide
SAR polarimetry
model-free 3-component decomposition for full polarimetric data (MF3CF)
radar polarimetry
calibration
Faraday rotation
ISBN 3-0365-6105-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639994803321
Tadono Takeo  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Assessment of Renewable Energy Resources with Remote Sensing
Assessment of Renewable Energy Resources with Remote Sensing
Autore Martins Fernando Ramos
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (244 p.)
Soggetto topico Research & information: general
Soggetto non controllato metaheuristic
parameter extraction
solar photovoltaic
whale optimization algorithm
cloud detection
digitized image processing
artificial neural networks
solar irradiance estimation
solar irradiance forecasting
solar energy
sky camera
remote sensing
CSP plants
coastal wind measurements
scanning LiDAR
plan position indicator
velocity volume processing
Hazaki Oceanographical Research Station
cloud coverage
image processing
total sky imagery
geothermal energy
geophysical prospecting
time domain electromagnetic method
electrical resistivity tomography
potential well field location
GES-CAL software
smart island
solar radiation forecasting
light gradient boosting machine
multistep-ahead prediction
feature importance
voxel-design approach
shading envelopes
point cloud data
computational design method
passive design strategy
lake breeze influence
hydropower reservoir
solar irradiance enhancement
solar energy resource
wind speed
extreme value analysis
scatterometer
feature engineering
forecasting
graphical user interface software
machine learning
photovoltaic power plant
surface solar radiation
global radiation
satellite
Baltic area
coastline
cloud
convection
climate
renewable energy resource assessment and forecasting
remote sensing data acquisition
data processing
statistical analysis
machine learning techniques
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557427903321
Martins Fernando Ramos  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning Methods with Noisy, Incomplete or Small Datasets
Machine Learning Methods with Noisy, Incomplete or Small Datasets
Autore Solé-Casals Jordi
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (316 p.)
Soggetto topico Information technology industries
Soggetto non controllato open contours
similarly shaped fish species
Discrete Cosine Transform (DCT)
Discrete Fourier Transform (DFT)
Extreme Learning Machines (ELM)
feature engineering
small data-sets
optimization
machine learning
preprocessing
image generation
weighted interpolation map
binarization
single sample per person
root canal measurement
multifrequency impedance
data augmentation
neural network
functional magnetic resonance imaging
independent component analysis
deep learning
recurrent neural network
functional connectivity
episodic memory
small sample learning
feature selection
noise elimination
space consistency
label correlations
empirical mode decomposition
sparse representations
tensor decomposition
tensor completion
machine translation
pairwise evaluation
educational data
small datasets
noisy datasets
smart building
Internet of Things (IoT)
Markov Chain Monte Carlo (MCMC)
ontology
graph model
Artificial Neural Network
Discriminant Analysis
dengue
feature extraction
sound event detection
non-negative matrix factorization
ultrasound images
shadow detection
shadow estimation
auto-encoders
semi-supervised learning
prediction
feature importance
feature elimination
hierarchical clustering
Parkinson’s disease
few-shot learning
permutation-variable importance
topological data analysis
persistent entropy
support-vector machine
data science
intelligent decision support
social vulnerability
gender-gap
digital-gap
COVID19
policy-making support
artificial intelligence
imperfect dataset
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557324603321
Solé-Casals Jordi  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui