top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications
ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications
Autore Tadono Takeo
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (240 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Environmental science, engineering & technology
Soggetto non controllato Sentinel-1
ALOS/PALSAR-2
land subsidence
accuracy assessment
Alexandria City
Egypt
local climate zone
random forest
feature importance
land surface temperature
grid cells
Sentinel-2
PALSAR-2
ASTER
soil moisture
ALOS-2
GA-BP
water cloud model
L-band
SAR
backscattering
soil moisture content
LAI
HH and HV polarization
flood
NoBADI
Florida
Hurricane Irma
synthetic aperture radar
polarimetric radar
co-polarized phase difference
radar scattering
vegetation
radar applications
agriculture
leaf area index
leave-one-out cross-validation
oil palm
radar vegetation index
vegetation descriptors
ecosystem carbon cycle
L-band SAR
vegetation index
random forest regression
plantation
permafrost
InSAR
Qinghai-Tibet Plateau
ALOS
thermal melting collapse
Sentinel-1A
SBAS-InSAR
heavy forest area
potential landslide identification
SAR-based landslide detection
Growing Split-Based Approach (GSBA)
Hokkaido landslide
Putanpunas landslide
SAR polarimetry
model-free 3-component decomposition for full polarimetric data (MF3CF)
radar polarimetry
calibration
Faraday rotation
ISBN 3-0365-6105-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639994803321
Tadono Takeo  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Assessment of Renewable Energy Resources with Remote Sensing
Assessment of Renewable Energy Resources with Remote Sensing
Autore Martins Fernando Ramos
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (244 p.)
Soggetto topico Research & information: general
Soggetto non controllato artificial neural networks
Baltic area
climate
cloud
cloud coverage
cloud detection
coastal wind measurements
coastline
computational design method
convection
CSP plants
data processing
digitized image processing
electrical resistivity tomography
extreme value analysis
feature engineering
feature importance
forecasting
geophysical prospecting
geothermal energy
GES-CAL software
global radiation
graphical user interface software
Hazaki Oceanographical Research Station
hydropower reservoir
image processing
lake breeze influence
light gradient boosting machine
machine learning
machine learning techniques
metaheuristic
multistep-ahead prediction
parameter extraction
passive design strategy
photovoltaic power plant
plan position indicator
point cloud data
potential well field location
remote sensing
remote sensing data acquisition
renewable energy resource assessment and forecasting
satellite
scanning LiDAR
scatterometer
shading envelopes
sky camera
smart island
solar energy
solar energy resource
solar irradiance enhancement
solar irradiance estimation
solar irradiance forecasting
solar photovoltaic
solar radiation forecasting
statistical analysis
surface solar radiation
time domain electromagnetic method
total sky imagery
velocity volume processing
voxel-design approach
whale optimization algorithm
wind speed
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557427903321
Martins Fernando Ramos  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning Methods with Noisy, Incomplete or Small Datasets
Machine Learning Methods with Noisy, Incomplete or Small Datasets
Autore Solé-Casals Jordi
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (316 p.)
Soggetto topico Information technology industries
Soggetto non controllato artificial intelligence
Artificial Neural Network
auto-encoders
binarization
COVID19
data augmentation
data science
deep learning
dengue
digital-gap
Discrete Cosine Transform (DCT)
Discrete Fourier Transform (DFT)
Discriminant Analysis
educational data
empirical mode decomposition
episodic memory
Extreme Learning Machines (ELM)
feature elimination
feature engineering
feature extraction
feature importance
feature selection
few-shot learning
functional connectivity
functional magnetic resonance imaging
gender-gap
graph model
hierarchical clustering
image generation
imperfect dataset
independent component analysis
intelligent decision support
Internet of Things (IoT)
label correlations
machine learning
machine translation
Markov Chain Monte Carlo (MCMC)
multifrequency impedance
neural network
noise elimination
noisy datasets
non-negative matrix factorization
ontology
open contours
optimization
pairwise evaluation
Parkinson's disease
permutation-variable importance
persistent entropy
policy-making support
prediction
preprocessing
recurrent neural network
root canal measurement
semi-supervised learning
shadow detection
shadow estimation
similarly shaped fish species
single sample per person
small data-sets
small datasets
small sample learning
smart building
social vulnerability
sound event detection
space consistency
sparse representations
support-vector machine
tensor completion
tensor decomposition
topological data analysis
ultrasound images
weighted interpolation map
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557324603321
Solé-Casals Jordi  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui