top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Energy Consumption in a Smart City
Energy Consumption in a Smart City
Autore Nastasi Benedetto
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (270 p.)
Soggetto topico Physics
Research & information: general
Soggetto non controllato asymmetric duty cycle control
augmented reality
bifilar coil
building energy flexibility
building energy load
Building Information Modelling (BIM)
building operation and maintenance
building performance assessment
building performance simulation
buildings office
buildings retrofitting
carbon emission intensity
climate change
CO2 emission
cooling load
daily energy need
decarbonisation of neighbourhoods
difference-in-differences
digital transformation
Digital Twin (DT)
digital twins
district energy infrastructure
economic feasibility
energy consumption
energy saving
energy transition
extended reality
future weather
Geographic Information System (GIS)
GIS
Green Building Index
green innovation
historical buildings
HOMER software
immersive technologies
indoor environment quality
induction heating
load shifting
metal melting
metaverse
mixed reality
n/a
nZEB
occupant's comfort
occupants' satisfaction
operative temperature
peak clipping
phase shift control
positive energy district
post-occupancy evaluation
pulse density modulation
pulse duty cycle control
Renewable Energy Systems (RESs)
Revit software's
series resonant inverter
smart city policy
solar gains
thermal load
TRNSYS
tropical climate
variable frequency control
virtual reality
window allocation
Zero Energy District (ZED)
ISBN 3-0365-5963-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637793403321
Nastasi Benedetto  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Innovative Learning Environments in STEM Higher Education [[electronic resource] ] : Opportunities, Challenges, and Looking Forward / / edited by Jungwoo Ryoo, Kurt Winkelmann
Innovative Learning Environments in STEM Higher Education [[electronic resource] ] : Opportunities, Challenges, and Looking Forward / / edited by Jungwoo Ryoo, Kurt Winkelmann
Autore Ryoo Jungwoo
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (XV, 137 p. 8 illus., 7 illus. in color.)
Disciplina 519.5
Collana SpringerBriefs in Statistics
Soggetto topico Statistics 
Machine learning
Learning
Instruction
Knowledge representation (Information theory) 
Statistics for Social Sciences, Humanities, Law
Machine Learning
Statistics and Computing/Statistics Programs
Learning & Instruction
Knowledge based Systems
Educació STEM
Educació superior
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Statistics for Social Sciences, Humanities, Law
Machine Learning
Statistics and Computing/Statistics Programs
Learning & Instruction
Knowledge based Systems
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Statistics and Computing
Education
Innovative Learning Environments
ILEs
Science, Technology, Engineering, and Math
STEM
virtual reality
VR
augmented reality
mixed reality
cross reality
extended reality
artificial intelligence
AI
adaptive learning
personalized learning
higher education
multimodal learning
mobile learning
Open Access
Social research & statistics
Mathematical & statistical software
Teaching skills & techniques
Cognition & cognitive psychology
Expert systems / knowledge-based systems
ISBN 3-030-58948-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. X-FILEs Vision for personalized and Adaptive Learning -- 3. X-FILEs Vision for Multi-modal Learning Formats -- 4. X-FILEs Vision for Extended/Cross Reality (XR) -- 5. X-FILEs Vision for Artificial Intelligence (AI) and Machine Learning (ML) -- 6. Cross-Cutting Concerns -- 7. Epilogue.
Record Nr. UNISA-996466564503316
Ryoo Jungwoo  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui