top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021
Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021
Autore Bizon Nicu
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (292 p.)
Soggetto topico Physics
Research & information: general
Soggetto non controllato 3PL logistics
aerial vehicles
ARAS
automotive
autonomous driving vehicles
autonomous power system
backstepping control
battery energy storage
constant power load
CRITIC
data-driven control model
DC-DC converter
decision making
Differential Evolution
dynamic stability
dynamic vibration absorbers
electricity system
energy management
energy storage
entropy
event-triggered control
generating power consumer
hybrid microgrids
hydroelectric power plant
intelligent driver model
islanding detection
local islanding
low-dropout linear voltage regulator
Lyapunov stability theorem
maximum power point tracking
metaheuristic algorithms
microgrid
microgrids
motion tracking control
networked control system
nonlinear system
optimal behavioral modeling
optimal power consumption
optimization
parameter identification
partial shading conditions
photovoltaic system
PLL
power supply rejection ratio
power-sharing control
quadrotor
remote islanding
renewable energies
renewable energy
signal processing
simulation
solar photovoltaic power plant
solid oxide fuel cell
surface-based polynomial fitting
university campus
vehicular communication
vibration control
wind power plant
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576884503321
Bizon Nicu  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning-Based Machinery Fault Diagnostics
Deep Learning-Based Machinery Fault Diagnostics
Autore Chen Hongtian
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (290 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato abnormal case removal
alumina concentration
aluminum reduction process
anti-noise
attention mechanism
autonomous underwater vehicle
auxiliary model
Bayesian network
bearing fault detection
belief rule base
canonical correlation analysis
canonical variate analysis
case-based reasoning
convolution fusion
convolutional neural network
data augmentation
data-driven
deep residual network
distributed predictive control
disturbance detection
dynamic autoregressive latent variables model
dynamics
event-triggered control
evidential reasoning
evidential reasoning rule
fault detection
fault diagnosis
fault tolerant control
filter
flywheel fault diagnosis
fractional-order calculus theory
fuzzy fault tree analysis
gated recurrent unit
gearbox fault diagnosis
hammerstein output-error systems
high-speed trains
information transformation
intelligent fault diagnosis
interval type-2 Takagi-Sugeno fuzzy model
just-in-time learning
k-nearest neighbor analysis
local outlier factor
LSSVM
multi-innovation identification theory
n/a
nonlinear networked systems
ocean currents
operational optimization
parameter optimization
power transmission system
process monitoring
PSO
robust optimization
sintering process
spatiotemporal feature fusion
stacked pruning sparse denoising autoencoder
state identification
statistical local analysis
subspace identification
system modelling
thruster fault diagnostics
variable time lag
wavelet mutation
ISBN 3-0365-5174-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469103321
Chen Hongtian  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui