top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Metabolomics Data Processing and Data Analysis-Current Best Practices
Metabolomics Data Processing and Data Analysis-Current Best Practices
Autore Hanhineva Kati
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (276 p.)
Soggetto topico Research & information: general
Soggetto non controllato all ion fragmentation
biostatistics
bootstrapped-VIP
chemical classification
combinatorial fragmentation
compound identification
computational metabolomics
computational statistical
constraint-based modeling
data processing
data repository
data-dependent acquisition (DDA)
data-independent acquisition
disease risk
enrichment analysis
environmental factors
experimental design
flux balance
forensics
fragmentation (MS/MS)
full-scan MS/MS processing
genome-scale metabolic modeling
global metabolomics
gut microbiome
host-microbiome
in silico
in silico workflows
ion selection algorithms
LC-MS
lipidomics
liquid chromatography
liquid chromatography high-resolution mass spectrometry
liquid chromatography mass spectrometry
liquid chromatography-mass spectrometry (LC-MS)
liquid chromatography-mass spectrometry (LC/MS)
mass spectral libraries
mass spectrometry
mass spectrometry imaging
meta-omics
metabolic networks
metabolic pathway and network analysis
metabolic profiling
metabolic reconstructions
metabolism
metabolite annotation
metabolite identification
metabolome mining
metabolomics
metabolomics data mapping
metabolomics imaging
metagenomics
molecular families
MS spectral prediction
multivariate risk modeling
networking
nontarget analysis
NPLS
pathway analysis
PLS
R programming
R-MetaboList 2
reanalysis
rule-based fragmentation
sample preparation
simulator
spectra processing
structure-based chemical classification
substructures
supervised learning
tandem mass spectral library
targeted analysis
time series
triplot
univariate and multivariate statistics
unsupervised learning
untargeted analysis
untargeted metabolomics
variable selection
wastewater
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557354403321
Hanhineva Kati  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Systems Analytics and Integration of Big Omics Data
Systems Analytics and Integration of Big Omics Data
Autore Hardiman Gary
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (202 p.)
Soggetto topico Medicine
Soggetto non controllato algorithm development for network integration
Alzheimer's disease
amyloid-beta
annotation
artificial intelligence
biocuration
bioinformatics pipelines
candidate genes
causal inference
cell lines
challenges
chromatin modification
class imbalance
clinical data
cognitive impairment
curse of dimensionality
data integration
database
deep phenotype
dementia
direct effect
disease variants
distance correlation
drug sensitivity
enrichment analysis
epidemiological data
epigenetics
feature selection
Gene Ontology
gene-environment interactions
genomics
genotype
heterogeneous data
indirect effect
integrative analytics
joint modeling
KEGG pathways
logic forest
machine learning
microtubule-associated protein tau
miRNA-gene expression networks
missing data
multi-omics
multiomics integration
multivariate analysis
multivariate causal mediation
n/a
network topology analysis
neurodegeneration
non-omics data
omics data
pharmacogenomics
phenomics
phenotype
plot visualization
precision medicine informatics
proteomic analysis
regulatory genomics
RNA expression
scalability
sequencing
support vector machine
systemic lupus erythematosus
tissue classification
tissue-specific expressed genes
transcriptome
ISBN 3-03928-745-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404089603321
Hardiman Gary  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui