top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning for Energy Systems
Machine Learning for Energy Systems
Autore Sidorov Denis N
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (272 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato abnormal defects
Adaptive Neuro-Fuzzy Inference System
artificial intelligence
blockchain
blockchain technology
cast-resin transformers
classification
classification and regression trees
clustering
component accident set
cyber-physical systems
data evolution mechanism
decision tree
energy internet
energy management system
energy router
energy storage
energy systems
ensemble empirical mode decomposition
extreme learning machine
fatigue
forecasting
harmonic impedance
harmonic impedance identification
harmonic parameter
harmonic responsibility
hierarchical clustering
high permeability renewable energy
hybrid AC/DC power system
hybrid interval forecasting
industrial mathematics
information security
insulator fault forecast
integrated energy system
intelligent control
Interfacial tension
inverse problems
linear regression model
linearization
load leveling
machine learning
maintenance
monitoring data without phase angle
MOPSO algorithm
offshore wind farm
optimization
parameter estimation
partial discharge
pattern recognition
photovoltaic output power forecasting
power control
power quality
QoS index of energy flow
relevance vector machine
renewable energy source
risk assessment
rule extraction
sample entropy
scheduling optimization
smart microgrid
stochastic optimization
time series forecasting
traction network
transformer oil parameters
vacuum tank degasser
Volterra equations
Volterra models
vulnerability
wavelet packets
wind power: wind speed: T-S fuzzy model: forecasting
wind turbine
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557678803321
Sidorov Denis N  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Power Electronics in Renewable Energy Systems / Teuvo Suntio, Tuomas Messo
Power Electronics in Renewable Energy Systems / Teuvo Suntio, Tuomas Messo
Autore Suntio Teuvo
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (604 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato washout filter
turbine and generator
unbalanced power grid
PV
transient dynamics
multi-input single output (MISO)
permanent magnet synchronous generator (PMSG)
static frequency characteristics
impedance analysis
FACTS devices
coordinated control
improved additional frequency control
experiment
resonant controller
two-stage photovoltaic power
voltage cancellation
energy
power matching
LCL filter
adaptive-MPPT (maximum power point tracking)
VSC
active power filter
perturb and observe
coordination control
voltage-type control
multiple VSGs
wind power prediction
linear quadratic regulator
multiport converter (MPC)
grid support function
power ripple elimination
adaptive resonant controller
phase space reconstruction
sliding mode control
impedance emulation
photovoltaic systems
grid-connected converter
SVM
photovoltaic generators
power grid
active front-end converter
THD
type-4 wind turbine
inertia
ROCOF
microgrid
coupled oscillators
multilevel power converter
DC-AC power converters
internal model
back-to-back converter
duty-ratio constraints
selective harmonic mitigation
parallel inverters
discontinuous conduction mode
droop control
step size
grid-connected
inverter
short-circuit fault
energy router
oscillation mitigation
improved-VSG (virtual synchronous generator)
source and load impedance
synchronverter
digital signal processor (DSP) TMS320F28335
operation optimization
battery-energy storage
generator speed control
electrical power generation
virtual impedance
weak grid
doubly-fed induction generator
grid synchronization
Energy Internet
open circuit voltage
state-of-charge balancing
renewable power system
control strategies
adaptive notch filter (ANF)
renewable energy
hardware in the loop (HIL)
energy storage
microgrids
inertia and damping characteristics
electric vehicle
multi-energy complementary
static compensator
stability
battery energy storage system
power-hardware-in- the-loop
electricity price
notch filter
time series
distorted grid
oscillation suppression
phase-locked loop (PLL)
modules
organic Rankine cycle
failure zone
Opal-RT Technologies®
distributed generation
modular multilevel converter
governor
microgrid (MG)
second-life battery
thermoelectric generator
stability analysis
wind energy system
variable coefficient regulation
single ended primary inductor converter (SEPIC)
error
soft switching
power electronics
PLL
SPWM
virtual synchronous generator
perturbation frequency
phase shifted
grid-connected inverter
cloud computing
low inertia
boost converter
impedance reshaping
small-signal and transient stability
speed control
multivariate linear regression
photovoltaic
adaptive control
frequency regulation
variable power tracking control
power converters
maximum power point tracking
virtual admittance
synchronization
peak-current-mode control
dynamic modeling
discontinuous operation mode
demand response
ISBN 9783039210459
3039210459
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346844203321
Suntio Teuvo  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui