top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Autore Lytras Miltiadis
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (258 p.)
Soggetto non controllato artificial neural network
home energy management systems
conditional random fields
LR
ELR
energy disaggregation
artificial intelligence
genetic algorithm
decision tree
static young’s modulus
price
scheduling
self-adaptive differential evolution algorithm
Marsh funnel
energy
yield point
non-intrusive load monitoring
mud rheology
distributed genetic algorithm
MCP39F511
Jetson TX2
sustainable development
artificial neural networks
transient signature
load disaggregation
smart villages
ambient assisted living
smart cities
demand side management
smart city
CNN
wireless sensor networks
object detection
drill-in fluid
ERELM
sandstone reservoirs
RPN
deep learning
RELM
smart grids
multiple kernel learning
load
feature extraction
NILM
energy management
energy efficient coverage
insulator
Faster R-CNN
home energy management
smart grid
LSTM
smart metering
optimization algorithms
forecasting
plastic viscosity
machine learning
computational intelligence
policy making
support vector machine
internet of things
sensor network
nonintrusive load monitoring
demand response
ISBN 3-03928-890-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404078103321
Lytras Miltiadis  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Energy Data Analytics for Smart Meter Data
Energy Data Analytics for Smart Meter Data
Autore Reinhardt Andreas
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (346 p.)
Soggetto topico Technology: general issues
Soggetto non controllato smart grid
nontechnical losses
electricity theft detection
synthetic minority oversampling technique
K-means cluster
random forest
smart grids
smart energy system
smart meter
GDPR
data privacy
ethics
multi-label learning
Non-intrusive Load Monitoring
appliance recognition
fryze power theory
V-I trajectory
Convolutional Neural Network
distance similarity matrix
activation current
electric vehicle
synthetic data
exponential distribution
Poisson distribution
Gaussian mixture models
mathematical modeling
machine learning
simulation
Non-Intrusive Load Monitoring (NILM)
NILM datasets
power signature
electric load simulation
data-driven approaches
smart meters
text convolutional neural networks (TextCNN)
time-series classification
data annotation
non-intrusive load monitoring
semi-automatic labeling
appliance load signatures
ambient influences
device classification accuracy
NILM
signature
load disaggregation
transients
pulse generator
smart metering
smart power grids
power consumption data
energy data processing
user-centric applications of energy data
convolutional neural network
energy consumption
energy data analytics
energy disaggregation
real-time
smart meter data
transient load signature
attention mechanism
deep neural network
electrical energy
load scheduling
satisfaction
Shapley Value
solar photovoltaics
review
deep learning
deep neural networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557645803321
Reinhardt Andreas  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui