top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Sensing and Control for Connected and Automated Vehicles
Advanced Sensing and Control for Connected and Automated Vehicles
Autore Huang Chao
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (284 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato TROOP
truck platooning
path planning
kalman filter
V2V communication
string stability
off-tracking
articulated cargo trucks
kabsch algorithm
potential field
sigmoid curve
autonomous vehicles
connected and autonomous vehicles
artificial neural networks
end-to-end learning
multi-task learning
urban vehicle platooning
simulation
attention
executive control
simulated driving
task-cuing experiment
electroencephalogram
fronto-parietal network
object vehicle estimation
radar accuracy
data-driven
radar latency
weighted interpolation
autonomous vehicle
urban platooning
vehicle-to-vehicle communication
in-vehicle network
analytic hierarchy architecture
traffic scenes
object detection
multi-scale channel attention
attention feature fusion
collision warning system
ultra-wideband
dead reckoning
time to collision
vehicle dynamic parameters
Unscented Kalman Filter
multiple-model
electric vehicle
unified chassis control
unsprung mass
autonomous driving
trajectory tracking
real-time control
model predictive control
tyre blow-out
yaw stability
roll stability
vehicle dynamics model
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566481403321
Huang Chao  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019
Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019
Autore Matese Alessandro
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (184 p.)
Soggetto topico Research & information: general
Biology, life sciences
Forestry & related industries
Soggetto non controllato unmanned aerial vehicles
seedling detection
forest regeneration
reforestation
establishment survey
machine learning
multispectral classification
UAV photogrammetry
forest modeling
ancient trees measurement
tree age prediction
Mauritia flexuosa
semantic segmentation
end-to-end learning
convolutional neural network
forest inventory
Unmanned Aerial Systems (UAS)
structure from motion (SfM)
Unmanned Aerial Vehicles (UAV)
Photogrammetry
Thematic Mapping
Accuracy Assessment
Reference Data
Forest Sampling
Remote Sensing
Robinia pseudoacacia L.
reproduction
spreading
short rotation coppice
unmanned aerial system (UAS)
object-based image analysis (OBIA)
convolutional neural network (CNN)
juniper woodlands
ecohydrology
remote sensing
unmanned aerial systems
central Oregon
rangelands
seedling stand inventorying
photogrammetric point clouds
hyperspectral imagery
leaf-off
leaf-on
UAV
multispectral image
forest fire
burn severity
classification
precision agriculture
biomass evaluation
image processing
Castanea sativa
unmanned aerial vehicles (UAV)
precision forestry
forestry applications
RGB imagery
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Forestry Applications of Unmanned Aerial Vehicles
Record Nr. UNINA-9910557112103321
Matese Alessandro  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui