top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Sensing and Control for Connected and Automated Vehicles
Advanced Sensing and Control for Connected and Automated Vehicles
Autore Huang Chao
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (284 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato analytic hierarchy architecture
articulated cargo trucks
artificial neural networks
attention
attention feature fusion
autonomous driving
autonomous vehicle
autonomous vehicles
collision warning system
connected and autonomous vehicles
data-driven
dead reckoning
electric vehicle
electroencephalogram
end-to-end learning
executive control
fronto-parietal network
in-vehicle network
kabsch algorithm
kalman filter
model predictive control
multi-scale channel attention
multi-task learning
multiple-model
n/a
object detection
object vehicle estimation
off-tracking
path planning
potential field
radar accuracy
radar latency
real-time control
roll stability
sigmoid curve
simulated driving
simulation
string stability
task-cuing experiment
time to collision
traffic scenes
trajectory tracking
TROOP
truck platooning
tyre blow-out
ultra-wideband
unified chassis control
Unscented Kalman Filter
unsprung mass
urban platooning
urban vehicle platooning
V2V communication
vehicle dynamic parameters
vehicle dynamics model
vehicle-to-vehicle communication
weighted interpolation
yaw stability
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566481403321
Huang Chao  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019
Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019
Autore Matese Alessandro
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (184 p.)
Soggetto topico Biology, life sciences
Forestry & related industries
Research & information: general
Soggetto non controllato Accuracy Assessment
ancient trees measurement
biomass evaluation
burn severity
Castanea sativa
central Oregon
classification
convolutional neural network
convolutional neural network (CNN)
ecohydrology
end-to-end learning
establishment survey
forest fire
forest inventory
forest modeling
forest regeneration
Forest Sampling
forestry applications
hyperspectral imagery
image processing
juniper woodlands
leaf-off
leaf-on
machine learning
Mauritia flexuosa
multispectral classification
multispectral image
object-based image analysis (OBIA)
photogrammetric point clouds
Photogrammetry
precision agriculture
precision forestry
rangelands
Reference Data
reforestation
remote sensing
Remote Sensing
reproduction
RGB imagery
Robinia pseudoacacia L.
seedling detection
seedling stand inventorying
semantic segmentation
short rotation coppice
spreading
structure from motion (SfM)
Thematic Mapping
tree age prediction
UAV
UAV photogrammetry
unmanned aerial system (UAS)
unmanned aerial systems
Unmanned Aerial Systems (UAS)
unmanned aerial vehicles
unmanned aerial vehicles (UAV)
Unmanned Aerial Vehicles (UAV)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Forestry Applications of Unmanned Aerial Vehicles
Record Nr. UNINA-9910557112103321
Matese Alessandro  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui