top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Flood Forecasting Using Machine Learning Methods
Flood Forecasting Using Machine Learning Methods
Autore Chang Fi-John
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (376 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato adaptive neuro-fuzzy inference system (ANFIS)
ANFIS
ANN
ANN-based models
artificial intelligence
artificial neural network
artificial neural networks
backtracking search optimization algorithm (BSA)
bat algorithm
bees algorithm
big data
classification and regression trees (CART)
convolutional neural networks
cultural algorithm
data assimilation
data forward prediction
data scarce basins
data science
database
decision tree
deep learning
disasters
Dongting Lake
early flood warning systems
empirical wavelet transform
ensemble empirical mode decomposition (EEMD)
ensemble machine learning
ensemble technique
extreme event management
extreme learning machine (ELM)
flash-flood
flood events
flood forecast
flood forecasting
flood inundation map
flood prediction
flood routing
flood susceptibility modeling
forecasting
Google Maps
Haraz watershed
high-resolution remote-sensing images
hybrid &
hybrid neural network
hydrograph predictions
hydroinformatics
hydrologic model
hydrologic models
hydrometeorology
improved bat algorithm
invasive weed optimization
Karahan flood
lag analysis
Lower Yellow River
LSTM
LSTM network
machine learning
machine learning methods
method of tracking energy differences (MTED)
micro-model
monthly streamflow forecasting
Muskingum model
natural hazards &
nonlinear Muskingum model
optimization
parameters
particle filter algorithm
particle swarm optimization
phase space reconstruction
postprocessing
precipitation-runoff
rainfall-runoff
random forest
rating curve method
real-time
recurrent nonlinear autoregressive with exogenous inputs (RNARX)
runoff series
self-organizing map
self-organizing map (SOM)
sensitivity
soft computing
St. Venant equations
stopping criteria
streamflow predictions
superpixel
support vector machine
survey
the Three Gorges Dam
the upper Yangtze River
time series prediction
uncertainty
urban water bodies
water level forecast
Wilson flood
wolf pack algorithm
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346688303321
Chang Fi-John  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Information Theory and Its Application in Machine Condition Monitoring
Information Theory and Its Application in Machine Condition Monitoring
Autore Li Yongbo
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (194 p.)
Soggetto topico History of engineering and technology
Technology: general issues
Soggetto non controllato adaptive particle swarm optimization (APSO)
anomaly detection
bearing
combined fault diagnosis
cubic spline interpolation envelope
D-S evidence theory
deep learning
domain adaptation
empirical wavelet transform
fault detection
fault diagnosis
gearbox
grey wolf optimizer
Huffman-multi-scale entropy (HMSE)
improved artificial bee colony algorithm
information fusion
JS divergence
kernel density estimation
low pass FIR filter
LSSVM
machine vision
misalignment
MobileNetV3
multi-source heterogeneous fusion
n/a
optimal bandwidth
partial transfer
peak extraction
rail surface defect detection
rotating machinery
satellite momentum wheel
signal interception
subdomain
support vector machine
support vector machine (SVM)
transfer learning
wind turbines
YOLOv4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566460803321
Li Yongbo  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui