top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning for Facial Informatics
Deep Learning for Facial Informatics
Autore Hsu Gee-Sern Jison
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (102 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato 2D attribute maps
3D geometry data
age estimation
coarse-to-fine
convolutional neural network
convolutional neural network (CNN)
convolutional neural networks
deep learning
deep metric learning
depth
emotion classification
external knowledge
face liveness detection
facial images processing
facial key point detection
facial landmarking
fused CNN feature
generative adversarial network
image classification
merging networks
multi-task learning
RGB
thermal image
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557721303321
Hsu Gee-Sern Jison  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emotion and Stress Recognition Related Sensors and Machine Learning Technologies
Emotion and Stress Recognition Related Sensors and Machine Learning Technologies
Autore Kyamakya Kyandoghere
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (550 p.)
Soggetto topico Technology: general issues
Soggetto non controllato activity recognition
affective computing
affective corpus
aging adults
arousal
arousal detection
artificial intelligence
automatic facial emotion recognition
auxiliary loss
behavioral biometrical systems
benchmarking
boredom
center of pressure
class center
classification
cognitive load
computer science
convolutional neural network
convolutional neural networks
correlation statistics
data transformation
dataset
deep convolutional neural network
deep learning
deep neural network
dilated convolutions
driving stress
EEG
elderly caring
electrocardiogram
electrodermal activity
electrodermal activity (EDA)
electroencephalography
emotion
emotion classification
emotion elicitation
emotion monitoring
emotion recognition
emotion representation
expert evaluation
face landmark detection
facial detection
facial emotion recognition
facial expression recognition
facial landmarks
feature extraction
feature selection
flight simulation
frustration
fully convolutional DenseNets
GSR
head-mounted display
homography matrix
human-computer interaction
in-ear EEG
information fusion
infrared thermal imaging
intensity of emotion recognition
interest
long short-term memory recurrent neural networks
long-term stress
machine learning
mental stress detection
multimodal sensing
multimodal sensors
musical genres
n/a
normalization
outpatient caring
overload
pain recognition
perceived stress scale
physiological sensing
physiological signal processing
physiological signals
psychophysiology
quantitative analysis
regression
respiration
road traffic
road types
sensor
sensor data analysis
signal analysis
signal processing
similarity measures
skip-connections
smart band
smart insoles
smart shoes
socially assistive robot
stress
stress detection
stress recognition
stress research
stress sensing
subject-dependent emotion recognition
subject-independent emotion recognition
thoracic electrical bioimpedance
time series analysis
transfer learning
underload
unobtrusive sensing
valence detection
Viola-Jones
virtual reality
wearable sensors
weighted loss
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557346003321
Kyamakya Kyandoghere  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sentiment Analysis for Social Media
Sentiment Analysis for Social Media
Autore Moreno Antonio
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (152 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato affect computing
big data-driven marketing
collaborative schemes of sentiment analysis and sentiment systems
convolutional neural network
cyber-aggression
deep learning
emotion analysis
emotion classification
gender classification
health insurance
hybrid vectorization
lexicon construction
machine learning
medical web forum
online review
opinion mining
provider networks
psychographic segmentation
racism
random forest
recommender system
review data mining
semantic networks
sentiment analysis
sentiment classification
sentiment lexicon
sentiment word analysis
sentiment-aware word embedding
social media
social networks
text feature representation
text mining
Twitter
user preference prediction
violence against women
violence based on sexual orientation
word association
ISBN 3-03928-573-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404092303321
Moreno Antonio  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui