top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data-Intensive Computing in Smart Microgrids
Data-Intensive Computing in Smart Microgrids
Autore Herodotou Herodotos
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (238 p.)
Soggetto topico Technology: general issues
Soggetto non controllato AMI
automatic generation control
battery energy storage systems
big data analytics
cloud computing
data-intensive smart application
deep learning
demand response
demand response programs
electricity consumption
electricity load forecasting
electricity theft detection
electricity thefts
energy management
energy trade contract
Extreme Learning Machine
feature selection
fog computing
Genetic Algorithm
green community
green data center
Grid Search
imbalanced data
intelligent control methods
load forecasting
microgrid
multi-objective energy optimization
n/a
NB-PLC
optimization techniques
photovoltaic
processing time
real time power management
real-time systems
renewable energy
renewable energy sources
resource allocation
response time
scheduling
SG
single/multi-area power system
smart grid
smart grids
smart meter
soft computing control methods
Support Vector Machine
TL
virtual inertial control
wind
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557603203321
Herodotou Herodotos  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Energy Data Analytics for Smart Meter Data
Energy Data Analytics for Smart Meter Data
Autore Reinhardt Andreas
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (346 p.)
Soggetto topico Technology: general issues
Soggetto non controllato activation current
ambient influences
appliance load signatures
appliance recognition
attention mechanism
convolutional neural network
Convolutional Neural Network
data annotation
data privacy
data-driven approaches
deep learning
deep neural network
deep neural networks
device classification accuracy
distance similarity matrix
electric load simulation
electric vehicle
electrical energy
electricity theft detection
energy consumption
energy data analytics
energy data processing
energy disaggregation
ethics
exponential distribution
fryze power theory
Gaussian mixture models
GDPR
K-means cluster
load disaggregation
load scheduling
machine learning
mathematical modeling
multi-label learning
n/a
NILM
NILM datasets
non-intrusive load monitoring
Non-intrusive Load Monitoring
Non-Intrusive Load Monitoring (NILM)
nontechnical losses
Poisson distribution
power consumption data
power signature
pulse generator
random forest
real-time
review
satisfaction
semi-automatic labeling
Shapley Value
signature
simulation
smart energy system
smart grid
smart grids
smart meter
smart meter data
smart metering
smart meters
smart power grids
solar photovoltaics
synthetic data
synthetic minority oversampling technique
text convolutional neural networks (TextCNN)
time-series classification
transient load signature
transients
user-centric applications of energy data
V-I trajectory
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557645803321
Reinhardt Andreas  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui