top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data-Intensive Computing in Smart Microgrids
Data-Intensive Computing in Smart Microgrids
Autore Herodotou Herodotos
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (238 p.)
Soggetto topico Technology: general issues
Soggetto non controllato electricity load forecasting
smart grid
feature selection
Extreme Learning Machine
Genetic Algorithm
Support Vector Machine
Grid Search
AMI
TL
SG
NB-PLC
fog computing
green community
resource allocation
processing time
response time
green data center
microgrid
renewable energy
energy trade contract
real time power management
load forecasting
optimization techniques
deep learning
big data analytics
electricity theft detection
smart grids
electricity consumption
electricity thefts
smart meter
imbalanced data
data-intensive smart application
cloud computing
real-time systems
multi-objective energy optimization
renewable energy sources
wind
photovoltaic
demand response programs
energy management
battery energy storage systems
demand response
scheduling
automatic generation control
single/multi-area power system
intelligent control methods
virtual inertial control
soft computing control methods
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557603203321
Herodotou Herodotos  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Energy Data Analytics for Smart Meter Data
Energy Data Analytics for Smart Meter Data
Autore Reinhardt Andreas
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (346 p.)
Soggetto topico Technology: general issues
Soggetto non controllato smart grid
nontechnical losses
electricity theft detection
synthetic minority oversampling technique
K-means cluster
random forest
smart grids
smart energy system
smart meter
GDPR
data privacy
ethics
multi-label learning
Non-intrusive Load Monitoring
appliance recognition
fryze power theory
V-I trajectory
Convolutional Neural Network
distance similarity matrix
activation current
electric vehicle
synthetic data
exponential distribution
Poisson distribution
Gaussian mixture models
mathematical modeling
machine learning
simulation
Non-Intrusive Load Monitoring (NILM)
NILM datasets
power signature
electric load simulation
data-driven approaches
smart meters
text convolutional neural networks (TextCNN)
time-series classification
data annotation
non-intrusive load monitoring
semi-automatic labeling
appliance load signatures
ambient influences
device classification accuracy
NILM
signature
load disaggregation
transients
pulse generator
smart metering
smart power grids
power consumption data
energy data processing
user-centric applications of energy data
convolutional neural network
energy consumption
energy data analytics
energy disaggregation
real-time
smart meter data
transient load signature
attention mechanism
deep neural network
electrical energy
load scheduling
satisfaction
Shapley Value
solar photovoltaics
review
deep learning
deep neural networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557645803321
Reinhardt Andreas  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui