top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied Neural Networks and Fuzzy Logic in Power Electronics, Motor Drives, Renewable Energy Systems and Smart Grids
Applied Neural Networks and Fuzzy Logic in Power Electronics, Motor Drives, Renewable Energy Systems and Smart Grids
Autore Simões Marcelo Godoy
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (202 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato adaptive neuro-fuzzy inference system
artificial intelligence
asynchronous motor
automatic generation control
back propagation algorithm
CNN-LSTM
cognitive meters
condition assessment
convolutional neural network
current balancing algorithm
Data Envelopment Analysis (DEA)
decision optimization
deep learning
deep reinforcement learning
distribution network equipment
droop curve
electric load forecasting
electricity forecasting
energy Internet
error differentiation
frequency regulation
Fuzzy Analytical Network Process (FANP)
fuzzy iteration
fuzzy logic
fuzzy neural network control
Fuzzy Theory
knowledge embed
level-shifted SPWM
linear active disturbance rejection control
load disaggregation
long-term forecasting (LTF)
machine learning
medium-term forecasting (MTF)
medium-voltage applications
meta-heuristic algorithms
motor drives
multi information source
multi-layer perceptron
multilevel current source inverter
NILM
non-dominated sorting genetic algorithm II
non-technical losses
particle swarm optimization
phase-shifted carrier SPWM
renewable energy
reserve power
semi-supervised learning
short-term forecasting (STF)
smart grid
solar power plant
STATCOM
state machine
the rate of change of frequency
thermostatically controlled loads
vector control
very short-term forecasting (VSTF)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557103703321
Simões Marcelo Godoy  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Short-Term Load Forecasting 2019
Short-Term Load Forecasting 2019
Autore Gabaldón Antonio
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (324 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato building electric energy consumption forecasting
bus load forecasting
cold-start problem
combined model
component estimation method
convolution neural network
cost analysis
cubic splines
data augmentation
data preprocessing technique
day ahead
DBN
deep learning
deep residual neural network
demand response
demand-side management
distributed energy resources
electric load forecasting
electricity
electricity consumption
electricity demand
feature extraction
feature selection
forecasting
hierarchical short-term load forecasting
hybrid energy system
lasso
load forecasting
Load forecasting
load metering
long short-term memory
modeling and forecasting
multiobjective optimization algorithm
multiple sources
multivariate random forests
Nordic electricity market
pattern similarity
performance criteria
power systems
preliminary load
prosumers
PSR
random forest
real-time electricity load
regressive models
residential load forecasting
seasonal patterns
short term load forecasting
short-term load forecasting
special days
Tikhonov regularization
time series
transfer learning
univariate and multivariate time series analysis
VSTLF
wavenet
weather station selection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557494303321
Gabaldón Antonio  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui