top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Big Data Analytics and Information Science for Business and Biomedical Applications
Big Data Analytics and Information Science for Business and Biomedical Applications
Autore Ahmed S. Ejaz
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (246 p.)
Soggetto topico Humanities
Social interaction
Soggetto non controllato abdominal aortic aneurysm
ant colony system
asymptotic theory
bayesian spatial mixture model
causal and dilated convolutional neural networks
deep learning
DWD
EEG/MEG data
elastic net
emulation
ensembling
entropy-based robust EM
estimation consistency
feature fusion
feature representation
financial time series
generalized linear models
high dimension
high dimensional predictors
high dimensional time-series
high-dimensional
high-dimensional data
information complexity criteria
inverse problem
L2-consistency
Lasso
Medicare data
missingness mechanism
mixture regression
model selection
multicategory classification
nonlocal prior
nonparamteric boostrap
nuisance
penalty methods
post-selection inference
prediction
proximal algorithm
random subspaces
regularization
segmentation
sparse group lasso
sparse PCA
stepwise regression
strong selection consistency
text mining
trend analysis
unconventional likelihood
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557614803321
Ahmed S. Ejaz  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Uncertainty Quantification Techniques in Statistics
Uncertainty Quantification Techniques in Statistics
Autore Kim Jong-Min
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (128 p.)
Soggetto non controllato ?1 lasso
?2 ridge
accuracy
adapative lasso
adaptive lasso
allele read counts
AUROC
BH-FDR
data envelopment analysis
elastic net
ensembles
entropy
feature selection
gene expression data
gene-expression data
geometric distribution
geometric mean
Gompertz distribution
group efficiency comparison
high-throughput
Kullback-Leibler divergence
Laplacian matrix
lasso
LASSO
low-coverage
MCP
mixture model
next-generation sequencing
probability proportional to size (PPS) sampling
randomization device
resampling
sandwich variance estimator
SCAD
sea surface temperature
semiparametric regression
sensitive attribute
SIS
Skew-Reflected-Gompertz distribution
stochastic frontier model
Yennum et al.'s model
ISBN 3-03928-547-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404091103321
Kim Jong-Min  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui