top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Signal Processing in Wearable Sensors for Health Monitoring
Advanced Signal Processing in Wearable Sensors for Health Monitoring
Autore Abbod Maysam
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (206 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato Anomaly Detection
arterial blood pressure
artificial neural network
automated dietary monitoring
behavioral signals
biomedical signal processing
blind source separation
Cardiovascular Disease
central venous pressure
continuous arterial blood pressure
deep convolutional autoencoder
diastolic blood pressure
drowsiness detection
eating detection
eating timing error analysis
ECG
EEG
electrocardiography
extreme learning machine
frequency-domain features
genetic algorithm
heart rate measurement
hemodynamics
Hill muscle model
independent component analysis
intracranial pressure
joint moment prediction
long short-term memory
machine learning
Machine Learning
motion artifact
multi-wavelength
multicriteria optimization
multilayer perceptron
myocardial infarction
n/a
non-invasive system
online input variables
pain detection
photoplethysmography
physiological signals
pulmonary arterial pressure
remote BCG
remote HR
remote PPG
Review
Signal Processing
smart eyeglasses
spline
stress detection
systolic blood pressure
vectorcardiography
wearable health monitoring
wearable sensor
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566462503321
Abbod Maysam  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Biosignal Analysis Methods
Intelligent Biosignal Analysis Methods
Autore Jović Alan
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (256 p.)
Soggetto topico Information technology industries
Soggetto non controllato accelerometer
accuracy
Alzheimer's disease
autonomic nervous system
brain functional connectivity
classifiers
CNN
convolution neural network (CNN)
covariate shift
cross-participant
DEAP
deep learning
disgust
drowsiness classification
drowsiness detection
EEG
EEG features
electrocardiogram
electrocardiography
electroencephalogram (EEG)
electroencephalography (EEG)
emotion
emotion recognition
emotional state
event-centered data segmentation
eye blinks rate
fall detection
fatigue detection
feature extraction
feature selection
frequency band fusion
galvanic skin response
heart rate
individual differences
inter-participant
inter-subject variability
k-fold validation
machine learning
mental workload
Mish
myocardial infarction
n/a
neural network-based refinement
non-local attention mechanism
non-stationarity
olfactory training
optimal shrinkage
phase-locked value (PLV)
photoplethysmography (PPG)
psychophysics
residual attention
residual network
sensitivity
signal quality index
skin conductance level
sleep stage scoring
sleep staging
smell
spatial transformer networks
stress
surgery image
T-end annotation
tSQI
wearable device
wearable sensors
window duration
wine sensory analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557354803321
Jović Alan  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS) / John Ball, Bo Tang
Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS) / John Ball, Bo Tang
Autore Ball John
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (344 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato FPGA
recurrence plot (RP)
residual learning
neural networks
driver monitoring
navigation
depthwise separable convolution
optimization
dynamic path-planning algorithms
object tracking
sub-region
cooperative systems
convolutional neural networks
DSRC
VANET
joystick
road scene
convolutional neural network (CNN)
multi-sensor
p-norm
occlusion
crash injury severity prediction
deep leaning
squeeze-and-excitation
electric vehicles
perception in challenging conditions
T-S fuzzy neural network
total vehicle mass of the front vehicle
electrocardiogram (ECG)
communications
generative adversarial nets
camera
adaptive classifier updating
Vehicle-to-X communications
convolutional neural network
predictive
Geobroadcast
infinity norm
urban object detector
machine learning
automated-manual transition
red light-running behaviors
photoplethysmogram (PPG)
panoramic image dataset
parallel architectures
visual tracking
autopilot
ADAS
kinematic control
GPU
road lane detection
obstacle detection and classification
Gabor convolution kernel
autonomous vehicle
Intelligent Transport Systems
driving decision-making model
Gaussian kernel
autonomous vehicles
enhanced learning
ethical and legal factors
kernel based MIL algorithm
image inpainting
fusion
terrestrial vehicle
driverless
drowsiness detection
map generation
object detection
interface
machine vision
driving assistance
blind spot detection
deep learning
relative speed
autonomous driving assistance system
discriminative correlation filter bank
recurrent neural network
emergency decisions
LiDAR
real-time object detection
vehicle dynamics
path planning
actuation systems
maneuver algorithm
autonomous driving
smart band
the emergency situations
two-wheeled
support vector machine model
global region
biological vision
automated driving
ISBN 9783039213764
3039213768
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367757403321
Ball John  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui