Multivariate Approximation for solving ODE and PDE
| Multivariate Approximation for solving ODE and PDE |
| Autore | Cesarano Clemente |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (202 p.) |
| Soggetto topico |
Mathematics and Science
Research and information: general |
| Soggetto non controllato |
(G,αf)-bonvexity/(G,αf)-pseudobonvexity
(G,αf)-invexity/(G,αf)-pseudoinvexity asymmetric iterative schemes Bernstein polynomials bivariate function blending difference Boolean sum continued fraction delay differential equations divided difference domain decomposition duality efficient solutions equidistant nodes even-order differential equations fourth-order generalized fractional Taylor's formulae group explicit Hadamard transform Hilbert transform hypersingular integral inverse difference iterated generalized fractional derivatives iteration methods Iyengar inequality least-squares multiple roots neutral delay neutral differential equations non-differentiable nondifferentiable nonlinear equations nonoscillatory solutions oblique decomposition one-point methods optimal convergence order of convergence oscillation oscillatory solutions parallel computation parameter estimation physical modelling poisson equation riccati transformation right and left generalized fractional derivatives second-order simultaneous approximation strictly pseudo (V,α,ρ,d)-type-I support function symmetric duality Thiele-Newton's expansion unified dual Viscovatov-like algorithm |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557396603321 |
Cesarano Clemente
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Symmetry in Complex Systems
| Symmetry in Complex Systems |
| Autore | Machado J. A. Tenreiro |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (118 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
adapted PageRank algorithm
adiabatic invariant Banach space bifurcation theory biplex networks Caputo derivative complex networks complex systems conserved quantity cooperative divided difference Fourier transform fractional calculus function approximation generalized Fourier law Kung-Traub method Laplace transform Lipschitz constant local convergence Mei symmetry Mittag-Leffler function mobile robots multi-agent system (MAS) multiplex networks neighbor node networks centrality non-Fourier heat conduction non-standard Lagrangians nonlinear dynamical systems Opportunistic complex social network PageRank vector probability model quasi-fractional dynamical system radius of convergence reinforcement learning (RL) social relationship symmetry-breaking |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557292103321 |
Machado J. A. Tenreiro
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Symmetry with Operator Theory and Equations / Ioannis Argyros
| Symmetry with Operator Theory and Equations / Ioannis Argyros |
| Autore | Argyros Ioannis K |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (208 p.) |
| Soggetto non controllato |
Lipschitz condition
order of convergence Scalar equations local and semilocal convergence multiple roots Nondifferentiable operator optimal iterative methods Order of convergence convergence order fast algorithms iterative method computational convergence order generalized mixed equilibrium problem nonlinear equations systems of nonlinear equations Chebyshev’s iterative method local convergence iterative methods divided difference Multiple roots semi-local convergence scalar equations left Bregman asymptotically nonexpansive mapping basin of attraction maximal monotone operator Newton–HSS method general means Steffensen’s method derivative-free method simple roots fixed point problem split variational inclusion problem weighted-Newton method ball radius of convergence Traub–Steffensen method Newton’s method fractional derivative Banach space multiple-root solvers uniformly convex and uniformly smooth Banach space Fréchet-derivative optimal convergence Optimal iterative methods basins of attraction nonlinear equation |
| ISBN |
9783039216673
3039216678 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910367751703321 |
Argyros Ioannis K
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||