top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Forecasting and Risk Management Techniques for Electricity Markets
Forecasting and Risk Management Techniques for Electricity Markets
Autore Yamada Yuji
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (212 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato artificial market simulation
balancing power market
bidding agent
bidding strategy
blockchain
cashflow management of electricity businesses
cooperative mechanism
cyclic cubic spline
day-ahead market
demonstration experiment
digital grid
distributed energy resources
distributed energy resources (DER)
electric vehicle
electric vehicles
electricity derivatives and forwards
electricity load
electricity markets
electricity price
electricity price forecasting
empirical simulations
functional autoregressive model
functional final prediction error (FFPE)
functional principle component analysis
hardware control
home energy management systems
intra-day market
liquidity
market maker
microgrid
minimum variance hedge
multi agent system
n/a
naive method
non-parametric regression
optimal hedging using nonparametric techniques
P2P electricity market
P2P energy trading
peer to peer energy market
peer-to-peer energy trading
price fluctuation
renewable energy
retailers and power producers
solar power and thermal energy
spline basis functions
vector autoregressive model
weather derivatives
wind energy
ISBN 3-0365-5184-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619464203321
Yamada Yuji  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning and Data Mining Applications in Power Systems
Machine Learning and Data Mining Applications in Power Systems
Autore Leonowicz Zbigniew
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (314 p.)
Soggetto topico Energy industries and utilities
History of engineering and technology
Technology: general issues
Soggetto non controllato 2-150 kHz
agglomerative
ANFIS
battery energy storage systems (BESS)
binary-coded genetic algorithms
cluster analysis
cluster analysis (CA)
clustering
conducted disturbances
COVID-19
critical infrastructure
Data Injection Attack
data mining
demand response
demand-side management
demographic characteristic
dictionary impulsion
different batteries
discrete cosine transform
discrete Haar transform
discrete wavelet transform
distributed energy resources
distributed energy resources (DER)
energy management
energy storage systems
energy storage systems (ESS)
frequency estimation
fuzzy logic
global index
harmonics, cancellation, and attenuation of harmonics
Hidden Markov Model
home energy management
household energy consumption
induction generator
integrated renewable energy system
intentional emission
K-means
load profile
long-term assessment
low-voltage networks
machine learning
mains signalling
MPPT
n/a
neural network
non-intentional emission
nonlinear loads
off-grid microgrid
optimal power scheduling
optimization techniques
Power Line Communications (PLC)
power network disturbances
power quality
power quality (PQ)
power system
power systems
renewable energy
short term conditions
short-term forecast
singular value decomposition
smart grid
smart grids
social distancing
sparse signal decomposition
spectrum interpolation
supervised dictionary learning
supraharmonics
THDi
time series
time-varying reproduction number
transient stability assessment
variable speed WECS
virtual power plant
virtual power plant (VPP)
water treatment plant
waveform distortion
wind energy
wind energy conversion system
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576877503321
Leonowicz Zbigniew  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui