Vai al contenuto principale della pagina

Energy Data Analytics for Smart Meter Data



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Reinhardt Andreas Visualizza persona
Titolo: Energy Data Analytics for Smart Meter Data Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica: 1 electronic resource (346 p.)
Soggetto topico: Technology: general issues
Soggetto non controllato: smart grid
nontechnical losses
electricity theft detection
synthetic minority oversampling technique
K-means cluster
random forest
smart grids
smart energy system
smart meter
GDPR
data privacy
ethics
multi-label learning
Non-intrusive Load Monitoring
appliance recognition
fryze power theory
V-I trajectory
Convolutional Neural Network
distance similarity matrix
activation current
electric vehicle
synthetic data
exponential distribution
Poisson distribution
Gaussian mixture models
mathematical modeling
machine learning
simulation
Non-Intrusive Load Monitoring (NILM)
NILM datasets
power signature
electric load simulation
data-driven approaches
smart meters
text convolutional neural networks (TextCNN)
time-series classification
data annotation
non-intrusive load monitoring
semi-automatic labeling
appliance load signatures
ambient influences
device classification accuracy
NILM
signature
load disaggregation
transients
pulse generator
smart metering
smart power grids
power consumption data
energy data processing
user-centric applications of energy data
convolutional neural network
energy consumption
energy data analytics
energy disaggregation
real-time
smart meter data
transient load signature
attention mechanism
deep neural network
electrical energy
load scheduling
satisfaction
Shapley Value
solar photovoltaics
review
deep learning
deep neural networks
Persona (resp. second.): PereiraLucas
ReinhardtAndreas
Sommario/riassunto: The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal.
Titolo autorizzato: Energy Data Analytics for Smart Meter Data  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557645803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui