Vai al contenuto principale della pagina
| Autore: |
Katz Nicholas M. <1943->
|
| Titolo: |
Convolution and equidistribution [[electronic resource] ] : Sato-Tate theorems for finite-field Mellin transforms / / Nicholas M. Katz
|
| Pubblicazione: | Princeton ; ; Oxford, : Princeton University Press, c2012 |
| Edizione: | Course Book |
| Descrizione fisica: | 1 online resource (213 p.) |
| Disciplina: | 515/.723 |
| Soggetto topico: | Mellin transform |
| Convolutions (Mathematics) | |
| Sequences (Mathematics) | |
| Soggetto non controllato: | ArtinГchreier reduced polynomial |
| Emanuel Kowalski | |
| EulerАoincar formula | |
| Frobenius conjugacy class | |
| Frobenius conjugacy | |
| Frobenius tori | |
| GoursatЋolchinВibet theorem | |
| Kloosterman sheaf | |
| Laurent polynomial | |
| Legendre | |
| Mellin transform | |
| Pierre Deligne | |
| Ron Evans | |
| Tannakian category | |
| Tannakian groups | |
| Zeeev Rudnick | |
| algebro-geometric | |
| autodual objects | |
| autoduality | |
| characteristic two | |
| connectedness | |
| dimensional objects | |
| duality | |
| equidistribution | |
| exponential sums | |
| fiber functor | |
| finite field Mellin transform | |
| finite field | |
| finite fields | |
| geometrical irreducibility | |
| group scheme | |
| hypergeometric sheaf | |
| interger monic polynomials | |
| isogenies | |
| lie-irreducibility | |
| lisse | |
| middle convolution | |
| middle extension sheaf | |
| monic polynomial | |
| monodromy groups | |
| noetherian connected scheme | |
| nonsplit form | |
| nontrivial additive character | |
| number theory | |
| odd characteristic | |
| odd prime | |
| orthogonal case | |
| perverse sheaves | |
| polynomials | |
| pure weight | |
| semisimple object | |
| semisimple | |
| sheaves | |
| signs | |
| split form | |
| supermorse | |
| theorem | |
| theorems | |
| Classificazione: | SI 830 |
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Front matter -- Contents -- Introduction -- CHAPTER 1. Overview -- CHAPTER 2. Convolution of Perverse Sheaves -- CHAPTER 3. Fibre Functors -- CHAPTER 4. The Situation over a Finite Field -- CHAPTER 5. Frobenius Conjugacy Classes -- CHAPTER 6. Group-Theoretic Facts about Ggeom and Garith -- CHAPTER 7. The Main Theorem -- CHAPTER 8. Isogenies, Connectedness, and Lie-Irreducibility -- CHAPTER 9. Autodualities and Signs -- CHAPTER 10. A First Construction of Autodual Objects -- CHAPTER 11. A Second Construction of Autodual Objects -- CHAPTER 12. The Previous Construction in the Nonsplit Case -- CHAPTER 13. Results of Goursat-Kolchin-Ribet Type -- CHAPTER 14. The Case of SL(2); the Examples of Evans and Rudnick -- CHAPTER 15. Further SL(2) Examples, Based on the Legendre Family -- CHAPTER 16. Frobenius Tori and Weights; Getting Elements of Garith -- CHAPTER 17. GL(n) Examples -- CHAPTER 18. Symplectic Examples -- CHAPTER 19. Orthogonal Examples, Especially SO(n) Examples -- CHAPTER 20. GL(n) x GL(n) x ... x GL(n) Examples -- CHAPTER 21. SL(n) Examples, for n an Odd Prime -- CHAPTER 22. SL(n) Examples with Slightly Composite n -- CHAPTER 23. Other SL(n) Examples -- CHAPTER 24. An O(2n) Example -- CHAPTER 25. G2 Examples: the Overall Strategy -- CHAPTER 26. G2 Examples: Construction in Characteristic Two -- CHAPTER 27. G2 Examples: Construction in Odd Characteristic -- CHAPTER 28. The Situation over ℤ: Results -- CHAPTER 29. The Situation over ℤ: Questions -- CHAPTER 30. Appendix: Deligne's Fibre Functor -- Bibliography -- Index |
| Sommario/riassunto: | Convolution and Equidistribution explores an important aspect of number theory--the theory of exponential sums over finite fields and their Mellin transforms--from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new directions in the subject. The finite-field Mellin transform (of a function on the multiplicative group of a finite field) is defined by summing that function against variable multiplicative characters. The basic question considered in the book is how the values of the Mellin transform are distributed (in a probabilistic sense), in cases where the input function is suitably algebro-geometric. This question is answered by the book's main theorem, using a mixture of geometric, categorical, and group-theoretic methods. By providing a new framework for studying Mellin transforms over finite fields, this book opens up a new way for researchers to further explore the subject. |
| Titolo autorizzato: | Convolution and equidistribution ![]() |
| ISBN: | 1-283-37996-1 |
| 9786613379962 | |
| 1-4008-4270-0 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910789730903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |