top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Neural Networks and Evolutionary Computation in Remote Sensing
Artificial Neural Networks and Evolutionary Computation in Remote Sensing
Autore Kavzoglu Taskin
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (256 p.)
Soggetto topico Research and information: general
Soggetto non controllato aerial images
AI on the edge
artificial neural networks
China
classification
classification ensemble
CNN
CNNs
convolutional neural network
convolutional neural networks
convolutional neural networks (CNNs)
deep learning
dense network
digital terrain analysis
dilated convolutional network
earth observation
end-to-end detection
Faster RCNN
feature fusion
Feicheng
few-shot learning
Gaofen 6
Gaofen-2 imagery
geographic information system (GIS)
hyperspectral image classification
hyperspectral images
image downscaling
image segmentation
land-use
LiDAR
light detection and ranging
machine learning
mask R-CNN
mask regional-convolutional neural networks
microsat
mission
mixed forest
mixed-inter nonlinear programming
model generalization
multi-label segmentation
multi-scale feature fusion
nanosat
on-board
optical remote sensing images
post-processing
quadruplet loss
remote sensing
resource extraction
semantic features
semantic segmentation
Sentinel-2
ship detection
single shot multi-box detector (SSD)
spatial distribution
SRGAN
statistical features
super-resolution
superstructure optimization
Tai'an
transfer learning
unmanned aerial vehicles
winter wheat
You Look Only Once-v3 (YOLO-v3)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557148403321
Kavzoglu Taskin  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Marine Geomorphometry / Vincent Lecours, Margaret Dolan, Vanessa Lucieer
Marine Geomorphometry / Vincent Lecours, Margaret Dolan, Vanessa Lucieer
Autore Lecours Vincent
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (400 p.)
Soggetto non controllato geomorphology
simulation
accuracy
spatial scale
marine geomorphology
surface roughness
forage fish
satellite imagery
thalwegs
digital elevation models (DEMs)
Seabed 2030
Pacific sand lance
Acoustic applications
python
Nippon Foundation/GEBCO
Oceanic Shoals Australian Marine Park
submarine topography
multi beam echosounder
sedimentation
bedforms
carbonate banks
polychaete
cold-water coral
multiscale
automated-mapping
semi-automated mapping
sediment habitats
Atlantic Ocean
Northwestern Australia
random forest
benthic habitat mapping
paleoclimate
submerged glacial bedforms
seafloor
currents
Cenomanian–Turonian
Multibeam bathymetry
geomorphometry
ArcGIS
filter
seabed mapping
coral reefs
eastern Brazilian shelf
digital terrain analysis
multibeam spatial resolution
multibeam
multibeam sonar
Timor Sea
seafloor geomorphometry
shelf-slope-rise
terrain analysis
seafloor mapping technologies
spatial analysis
Canary Basin
paleobathymetry
Bonaparte Basin
pockmarks
benthic habitats
Malin Basin
geographic object-based image analysis
seafloor mapping standards and protocols
GIS
Bering Sea
object segmentation
Barents Sea
bathymetry
carbonate mound
underwater acoustics
integration artefacts
multibeam echosounder
domes
global bathymetry
Random Forests
North Sea
spatial prediction
Glaciated Margin
marine geology
image segmentation
shelf morphology
Alaska
paleoceanography
confidence
swath geometry
volcanoes
deglaciation
Cretaceous
DEM
habitat mapping
marine remote sensing
reconstruction
acoustic-seismic profiling
canyons
ISBN 9783038979555
3038979554
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346663203321
Lecours Vincent  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui