top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Remote Sensing for Global Forest Monitoring
Advances in Remote Sensing for Global Forest Monitoring
Autore Tomppo Erkki
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (352 p.)
Soggetto topico Environmental economics
Research and information: general
Soggetto non controllato activity data
bootstrapping
boreal forest
Bowen ratio
C-band
canopy height model
carbon flux
classification
compatible equation
constrained neighbor interpolation
CRFasRNN
CUSUM
data assessment
data fusion
deep learning
deforestation
degradation
digital surface model
digital terrain model
drought
dual-FCN8s
EBLUP
emissions factor
error propagation
error-in-variable modeling
FCN8s
field measured LAI
forest area change
forest cover
forest disturbance mapping
forest monitoring
forest structure change
forest type
genetic algorithm
Germany
GF2
improved k-NN
inconsistency
IPCC good practice guidelines
La Rioja
land use land cover
Landsat
leave-one-out cross-validation
LiDAR
logistic regression
machine-learning
magnitude
multinomial logistic regression
multitemporal LiDAR and stand-level estimates
n/a
near real-time monitoring
nonlinear seemingly unrelated regression
NRT monitoring
ordinary neighbor interpolation
Picea crassifolia Kom
point cloud density
random forest
random forests
remotely sensed LAI
removals factor
savanna
Sentinel 2
Sentinel-1
Sentinel-2
small area estimation
South Africa
state space models
statistical estimator
stereo imagery
support vector machine
synthetic aperture radar
temperate forest
temporal dynamics
time series satellite data
tropical forest
tropical peat
uncertainty
uncertainty evaluation
validation
windstorm damage
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557338103321
Tomppo Erkki  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments
UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments
Autore Gonzalez Toro Felipe
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (388 p.)
Soggetto topico Technology: general issues
Soggetto non controllato 3D registration
accuracy
aerial systems
applications, inspection robotics, bridge inspection with UAS
autonomous localization
backpack mobile mapping
bioinspired map
bundle block adjustment
change detection
coastal mapping
coastal monitoring
computer architecture
consensus theory
convolutional neural networks
data collection
decision making
deep learning
Deep Reinforcement-Learning
Digital Elevation Models (DEMs)
digital surface model
direct georeferencing
distributed state estimation
DSM assessment
emergency landing
geomorphological evolution
GNSS
GPS-denied environment
ground effect
image alignment
inspection
Kalman filter
Kilim River
landing
laser guidance
machine vision
map exploration
moving camera
multi-agent
multi-robot
multiple UAV navigation
multirotor
navigation
navigation in GPS/GNSS-denied environments
onboard GNSS RTK
OODA
optical flow
orthomosaic
particle filter
photogrammetry
POMDP
real-time
remote sensing
search
search and rescue
semantics
sensor faults
snow depth
snow field
snow mapping
snow-covered area
Structure-from-Motion (SfM)
target detection
technical guidelines
tidal phase
topologic mapping
UAS
UAS traffic management
UAV
UAV imagery
UAV photogrammetry
UAV swarms
underground cellars
unmanned aerial system
unmanned aerial vehicle
unmanned aerial vehicles
Unmanned Aerial Vehicles (UAVs)
video navigation
vision and action
vision-based navigation
visual detection
visual tracking
water level changes
YOLO
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557343503321
Gonzalez Toro Felipe  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui