Geometrical Theory of Analytic Functions
| Geometrical Theory of Analytic Functions |
| Autore | Oros Georgia Irina |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (208 p.) |
| Soggetto topico |
Mathematics & science
Research & information: general |
| Soggetto non controllato |
admissible functions
analytic function analytic functions asymptotic expansion best dominant best subordinant bi-univalent functions bounded analytic functions of complex order broom topology centered polygonal numbers coefficient bounds coefficients bounds conformable fractional derivative convex function convolution product cosine hyperbolic function differential containments differential inclusions differential inequalities differential subordination differential subordinations differential superordination dominant Fekete-Szegö problem Fekete-Szegő problem gap function Hadamard (convolution) product harmonic function holomorphic function horadam polynomial Hurwitz-Lerch Zeta-function Janowski functions lacunary function meromorphic functions meromorphic strongly starlike functions natural boundary open unit disk p-valent function Painlevé differential equation q-derivative operator q-difference operator q-generalized linear operator Riemann zeta function Sălăgean integral and differential operator singularities starlike function starlike functions strongly close-to-convex functions subordinant subordinating factor sequence subordination subordination and superordination symmetric conjugate points symmetric solution Taylor-Maclaurin series univalent function univalent functions ξ-Generalized Hurwitz-Lerch Zeta function |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557611203321 |
Oros Georgia Irina
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Integral Transformations, Operational Calculus and Their Applications
| Integral Transformations, Operational Calculus and Their Applications |
| Autore | Srivastava Hari Mohan |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (220 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
(δ,q)-neighborhood
analytic function analytic functions approximation properties Banach algebra Bézier bases bivariate operators conic region Convex function convex space convolution operators delay differential equations differentiable function differential subordination differential superordination exponential function fixed point theorem fractional differential equations with input functional integral equations fuzzy comprehensive evaluation generalized fractional differintegral operator Geometric Function Theory Hadamard product Hankel determinant integral operator Korovkin-type approximation theorem left generalized fractional derivative measure of noncompactness meromorphic multivalent starlike functions Mittag-Leffler stability modular space modulus of continuity N-quasi convex modular N-quasi semi-convex modular n/a P-convergent periodic solutions positive integral operators q-convex functions of complex order q-integral operator q-starlike functions of complex order rate of convergence relatively modular deferred-weighted statistical convergence Simpson's rule Stancu-type Bernstein operators statistical convergence statistically and relatively modular deferred-weighted summability subordination subordinations symmetric differential operator unit disk univalent function VANET vehicle collaborative content downloading Voronovskaja-type theorems weights ρ-Laplace transforms |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557643703321 |
Srivastava Hari Mohan
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||