Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino
| Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino |
| Autore | Sorrentino Alfonso |
| Edizione | [Pilot project,eBook available to selected US libraries only] |
| Pubbl/distr/stampa | Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015 |
| Descrizione fisica | 1 online resource (129 p.) |
| Disciplina | 514.74 |
| Collana | Mathematical Notes |
| Soggetto topico |
Hamiltonian systems
Hamilton-Jacobi equations |
| Soggetto non controllato |
Albert Fathi
Aubry set AubryЍather theory Hamiltonian dynamics Hamiltonians HamiltonЊacobi equation John Mather KAM theory KAM tori Lagrangian dynamics MAK tori Ma set Ma's critical value Ma's potential Maher sets Peierls' barrier Tonelli Lagrangians action-minimizing measure action-minimizing orbits chaos classical mechanics compact manifold differentiability invariant Lagrangian graphs invariant probability measures invariant sets orbits pendulum stable motion strict convexity unstable motion |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- Preface -- Chapter One. Tonelli Lagrangians and Hamiltonians on Compact Manifolds -- Chapter Two. From KAM Theory to Aubry-Mather Theory -- Chapter Three. Action-Minimizing Invariant Measures for Tonelli Lagrangians -- Chapter Four. Action-Minimizing Curves for Tonelli Lagrangians -- Chapter Five. The Hamilton-Jacobi Equation and Weak KAM Theory -- Appendices -- Appendix A. On the Existence of Invariant Lagrangian Graphs -- Appendix B. Schwartzman Asymptotic Cycle and Dynamics -- Bibliography -- Index |
| Record Nr. | UNINA-9910788016003321 |
Sorrentino Alfonso
|
||
| Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino
| Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino |
| Autore | Sorrentino Alfonso |
| Edizione | [Pilot project,eBook available to selected US libraries only] |
| Pubbl/distr/stampa | Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015 |
| Descrizione fisica | 1 online resource (129 p.) |
| Disciplina | 514.74 |
| Collana | Mathematical Notes |
| Soggetto topico |
Hamiltonian systems
Hamilton-Jacobi equations |
| Soggetto non controllato |
Albert Fathi
Aubry set AubryЍather theory Hamiltonian dynamics Hamiltonians HamiltonЊacobi equation John Mather KAM theory KAM tori Lagrangian dynamics MAK tori Ma set Ma's critical value Ma's potential Maher sets Peierls' barrier Tonelli Lagrangians action-minimizing measure action-minimizing orbits chaos classical mechanics compact manifold differentiability invariant Lagrangian graphs invariant probability measures invariant sets orbits pendulum stable motion strict convexity unstable motion |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- Preface -- Chapter One. Tonelli Lagrangians and Hamiltonians on Compact Manifolds -- Chapter Two. From KAM Theory to Aubry-Mather Theory -- Chapter Three. Action-Minimizing Invariant Measures for Tonelli Lagrangians -- Chapter Four. Action-Minimizing Curves for Tonelli Lagrangians -- Chapter Five. The Hamilton-Jacobi Equation and Weak KAM Theory -- Appendices -- Appendix A. On the Existence of Invariant Lagrangian Graphs -- Appendix B. Schwartzman Asymptotic Cycle and Dynamics -- Bibliography -- Index |
| Record Nr. | UNINA-9910812171703321 |
Sorrentino Alfonso
|
||
| Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematical Modeling and Simulation in Mechanics and Dynamic Systems
| Mathematical Modeling and Simulation in Mechanics and Dynamic Systems |
| Autore | Scutaru Maria Luminița |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (342 p.) |
| Soggetto topico |
Mathematics & science
Research & information: general |
| Soggetto non controllato |
"holographic implementations"
ABAQUS actual systems ANN apolar transport artificial neural network Artificial Neural Network (ANN) autonomous feature extraction Catalonia code-based modelling approach complex system dynamics Computational Fluid Dynamics (CFD) computational solutions computer simulations control Convolutional Neural Network (CNN) COVID-19 crack cubics deep learning Deep Learning (DL) differentiability dimensional analysis double Lorentzian spectrum ecological analysis ecological coefficient of performance Euler-Poincaré equation exergy analysis extended finite element method extended iso-geometric analysis finite time thermodynamic optimization fractal hydrodynamic regimes fractal kink fractal Schrödinger regimes fractal soliton geometric analogy harmonic mapping harmonic mapping principle heat transfer helicopter model hidden symmetries high temperature proton exchange membrane fuel cell HT-PEMFC interphase section irreversibility Lagrange-d'Alembert principle Lie group machine learning mechanics model law modeling Monte Carlo simulation n/a nanowire cantilever non-conservative dynamical system notch numerical analysis partial aging in standby PEM fuel cell percolation onset period doubling scenario photovoltaics pipe pipeline polymer CNTs systems power density qualitative and quantitative verification of simulation model SARS-CoV-2 SDL SEIRD (Susceptible, Exposed, Infected and Recovered and Death) similarity theory Sine-Gordon equations SL (2R) group solar energy state probability functions stochastic model straight bar stress difference method (SDM) system of transcendental equation T-stress thermodynamic efficiency thermophotovoltaics transfer learning turbulent flow X-FEM |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910566464403321 |
Scutaru Maria Luminița
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||