top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino
Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino
Autore Sorrentino Alfonso
Edizione [Pilot project,eBook available to selected US libraries only]
Pubbl/distr/stampa Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015
Descrizione fisica 1 online resource (129 p.)
Disciplina 514.74
Collana Mathematical Notes
Soggetto topico Hamiltonian systems
Hamilton-Jacobi equations
Soggetto non controllato Albert Fathi
Aubry set
AubryЍather theory
Hamiltonian dynamics
Hamiltonians
HamiltonЊacobi equation
John Mather
KAM theory
KAM tori
Lagrangian dynamics
MAK tori
Ma set
Ma's critical value
Ma's potential
Maher sets
Peierls' barrier
Tonelli Lagrangians
action-minimizing measure
action-minimizing orbits
chaos
classical mechanics
compact manifold
differentiability
invariant Lagrangian graphs
invariant probability measures
invariant sets
orbits
pendulum
stable motion
strict convexity
unstable motion
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Preface -- Chapter One. Tonelli Lagrangians and Hamiltonians on Compact Manifolds -- Chapter Two. From KAM Theory to Aubry-Mather Theory -- Chapter Three. Action-Minimizing Invariant Measures for Tonelli Lagrangians -- Chapter Four. Action-Minimizing Curves for Tonelli Lagrangians -- Chapter Five. The Hamilton-Jacobi Equation and Weak KAM Theory -- Appendices -- Appendix A. On the Existence of Invariant Lagrangian Graphs -- Appendix B. Schwartzman Asymptotic Cycle and Dynamics -- Bibliography -- Index
Record Nr. UNINA-9910788016003321
Sorrentino Alfonso  
Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino
Action-minimizing methods in Hamiltonian dynamics : an introduction to Aubry-Mather theory / / Alfonso Sorrentino
Autore Sorrentino Alfonso
Edizione [Pilot project,eBook available to selected US libraries only]
Pubbl/distr/stampa Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015
Descrizione fisica 1 online resource (129 p.)
Disciplina 514.74
Collana Mathematical Notes
Soggetto topico Hamiltonian systems
Hamilton-Jacobi equations
Soggetto non controllato Albert Fathi
Aubry set
AubryЍather theory
Hamiltonian dynamics
Hamiltonians
HamiltonЊacobi equation
John Mather
KAM theory
KAM tori
Lagrangian dynamics
MAK tori
Ma set
Ma's critical value
Ma's potential
Maher sets
Peierls' barrier
Tonelli Lagrangians
action-minimizing measure
action-minimizing orbits
chaos
classical mechanics
compact manifold
differentiability
invariant Lagrangian graphs
invariant probability measures
invariant sets
orbits
pendulum
stable motion
strict convexity
unstable motion
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Preface -- Chapter One. Tonelli Lagrangians and Hamiltonians on Compact Manifolds -- Chapter Two. From KAM Theory to Aubry-Mather Theory -- Chapter Three. Action-Minimizing Invariant Measures for Tonelli Lagrangians -- Chapter Four. Action-Minimizing Curves for Tonelli Lagrangians -- Chapter Five. The Hamilton-Jacobi Equation and Weak KAM Theory -- Appendices -- Appendix A. On the Existence of Invariant Lagrangian Graphs -- Appendix B. Schwartzman Asymptotic Cycle and Dynamics -- Bibliography -- Index
Record Nr. UNINA-9910812171703321
Sorrentino Alfonso  
Princeton, [New Jersey] ; ; Oxford, [England] : , : Princeton University Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical Modeling and Simulation in Mechanics and Dynamic Systems
Mathematical Modeling and Simulation in Mechanics and Dynamic Systems
Autore Scutaru Maria Luminița
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (342 p.)
Soggetto topico Mathematics & science
Research & information: general
Soggetto non controllato "holographic implementations"
ABAQUS
actual systems
ANN
apolar transport
artificial neural network
Artificial Neural Network (ANN)
autonomous feature extraction
Catalonia
code-based modelling approach
complex system dynamics
Computational Fluid Dynamics (CFD)
computational solutions
computer simulations
control
Convolutional Neural Network (CNN)
COVID-19
crack
cubics
deep learning
Deep Learning (DL)
differentiability
dimensional analysis
double Lorentzian spectrum
ecological analysis
ecological coefficient of performance
Euler-Poincaré equation
exergy analysis
extended finite element method
extended iso-geometric analysis
finite time thermodynamic optimization
fractal hydrodynamic regimes
fractal kink
fractal Schrödinger regimes
fractal soliton
geometric analogy
harmonic mapping
harmonic mapping principle
heat transfer
helicopter model
hidden symmetries
high temperature proton exchange membrane fuel cell
HT-PEMFC
interphase section
irreversibility
Lagrange-d'Alembert principle
Lie group
machine learning
mechanics
model law
modeling
Monte Carlo simulation
n/a
nanowire cantilever
non-conservative dynamical system
notch
numerical analysis
partial aging in standby
PEM fuel cell
percolation onset
period doubling scenario
photovoltaics
pipe
pipeline
polymer CNTs systems
power density
qualitative and quantitative verification of simulation model
SARS-CoV-2
SDL
SEIRD (Susceptible, Exposed, Infected and Recovered and Death)
similarity theory
Sine-Gordon equations
SL (2R) group
solar energy
state probability functions
stochastic model
straight bar
stress difference method (SDM)
system of transcendental equation
T-stress
thermodynamic efficiency
thermophotovoltaics
transfer learning
turbulent flow
X-FEM
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566464403321
Scutaru Maria Luminița  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui