Vai al contenuto principale della pagina

Information Bottleneck : Theory and Applications in Deep Learning



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Geiger Bernhard Visualizza persona
Titolo: Information Bottleneck : Theory and Applications in Deep Learning Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica: 1 online resource (274 p.)
Soggetto topico: Information technology industries
Soggetto non controllato: bottleneck
classification
classifier
compression
conspicuous subset
decision tree
deep learning
deep networks
deep neural networks
ensemble
hand crafted priors
information
information bottleneck
information bottleneck principle
information theory
latent space representation
learnability
learnable priors
machine learning
mutual information
neural networks
optimization
regularization
regularization methods
representation learning
semi-supervised classification
stochastic neural networks
variational inference
Persona (resp. second.): KubinGernot
GeigerBernhard
Sommario/riassunto: The celebrated information bottleneck (IB) principle of Tishby et al. has recently enjoyed renewed attention due to its application in the area of deep learning. This collection investigates the IB principle in this new context. The individual chapters in this collection: • provide novel insights into the functional properties of the IB; • discuss the IB principle (and its derivates) as an objective for training multi-layer machine learning structures such as neural networks and decision trees; and • offer a new perspective on neural network learning via the lens of the IB framework. Our collection thus contributes to a better understanding of the IB principle specifically for deep learning and, more generally, of information-theoretic cost functions in machine learning. This paves the way toward explainable artificial intelligence.
Altri titoli varianti: Information Bottleneck
Titolo autorizzato: Information Bottleneck  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557582803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui