top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Convergence of Intelligent Data Acquisition and Advanced Computing Systems
Convergence of Intelligent Data Acquisition and Advanced Computing Systems
Autore Stamatescu Grigore
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (189 p.)
Soggetto topico Energy industries & utilities
Technology: general issues
Soggetto non controllato artificial neural network
atrous spatial pyramid pooling
attention gate
automotive
black box modeling
clock signal
CNN (Convolutional neural networks)
component
consumed and dissipated power
current
data acquisition
data classification
data consensus
deep learning
deep sparse auto-encoders
delay
demand response
detection
distributed systems
educational robotics
electric power train
electric vehicle
embedded systems
energy efficiency
FPGA-designing
heterogenous embedded systems
hidden faults
intelligent charging
intelligent data processing
Internet of Things
linear model
linear programming
logical and power-oriented checkability
measurements
medical diagnosis
n/a
ODE Solver
OpenCL
optimization
parallel/multi-core computing
Parareal
pavement defects
power train
precision agriculture
PSO algorithm
relevant data extraction
residual connection
ROS
safety-related system
sensing systems
sensor
sensors
signals
smart building
smart grid
smart parking
STEM
system identification
temperature and current consumption sensors
time delay estimation
trajectory planning
unmanned aerial vehicles
wireless sensor networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557333503321
Stamatescu Grigore  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Sensor Technologies for IoT
Smart Sensor Technologies for IoT
Autore Brida Peter
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (270 p.)
Soggetto topico Technology: general issues
Soggetto non controllato 5G
ACR
bit repair (B-REP)
Bluetooth
classification
clustering
convolutional neural network
data classification
dead reckoning
depth-based routing
detection
DRONET
electromagnetic scanning
energy-efficient
failure repair
Fast Reroute
few-shot learning
fingerprinting
free space optics
GNSS-RTK positioning
H.264/AVC
H.265/HEVC
human activity recognition
IMU
indoor tracking
Internet of Things
internet of things (IoT)
Internet of Things (IoT)
IoT
IoT system
localization
location-independent
magnetometer
MANET
measurement
meta learning
metric learning
mm-wave radars
mobile localization
Multicast Repair (M-REP)
multilayered network model
multiwavelength laser
n/a
optical code division multiple access (OCDMA)
optical sensors
particle filter
point cloud
position detection
positioning
pressure sensor
QoE
quality of service differentiation
ReRoute
smart sensor
smart sensors
subjective assessment
traffic
underwater wireless sensor network
vehicle
Velostat
vibration sensing
Wi-Fi
Wi-Fi sensing
wireless optical networks
wireless technology
WSN
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557599903321
Brida Peter  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui