top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Autore Bazi Yakoub
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (438 p.)
Soggetto topico Research & information: general
Soggetto non controllato synthetic aperture radar
despeckling
multi-scale
LSTM
sub-pixel
high-resolution remote sensing imagery
road extraction
machine learning
DenseUNet
scene classification
lifting scheme
convolution
CNN
image classification
deep features
hand-crafted features
Sinkhorn loss
remote sensing
text image matching
triplet networks
EfficientNets
LSTM network
convolutional neural network
water identification
water index
semantic segmentation
high-resolution remote sensing image
pixel-wise classification
result correction
conditional random field (CRF)
satellite
object detection
neural networks
single-shot
deep learning
global convolution network
feature fusion
depthwise atrous convolution
high-resolution representations
ISPRS vaihingen
Landsat-8
faster region-based convolutional neural network (FRCNN)
single-shot multibox detector (SSD)
super-resolution
remote sensing imagery
edge enhancement
satellites
open-set domain adaptation
adversarial learning
min-max entropy
pareto ranking
SAR
Sentinel–1
Open Street Map
U–Net
desert
road
infrastructure
mapping
monitoring
deep convolutional networks
outline extraction
misalignments
nearest feature selector
hyperspectral image classification
two stream residual network
Batch Normalization
plant disease detection
precision agriculture
UAV multispectral images
orthophotos registration
3D information
orthophotos segmentation
wildfire detection
convolutional neural networks
densenet
generative adversarial networks
CycleGAN
data augmentation
pavement markings
visibility
framework
urban forests
OUDN algorithm
object-based
high spatial resolution remote sensing
Generative Adversarial Networks
post-disaster
building damage assessment
anomaly detection
Unmanned Aerial Vehicles (UAV)
xBD
feature engineering
orthophoto
unsupervised segmentation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557747903321
Bazi Yakoub  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Process Monitoring for Industry 4.0
Advanced Process Monitoring for Industry 4.0
Autore Reis Marco S
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (288 p.)
Soggetto topico Technology: general issues
Soggetto non controllato spatial-temporal data
pasting process
process image
convolutional neural network
Industry 4.0
auto machine learning
failure mode effects analysis
risk priority number
rolling bearing
condition monitoring
classification
OPTICS
statistical process control
control chart pattern
disruptions
disruption management
fault diagnosis
construction industry
plaster production
neural networks
decision support systems
expert systems
failure mode and effects analysis (FMEA)
discriminant analysis
non-intrusive load monitoring
load identification
membrane
data reconciliation
real-time
online
monitoring
Six Sigma
multivariate data analysis
latent variables models
PCA
PLS
high-dimensional data
statistical process monitoring
artificial generation of variability
data augmentation
quality prediction
continuous casting
multiscale
time series classification
imbalanced data
combustion
optical sensors
spectroscopy measurements
signal detection
digital processing
principal component analysis
curve resolution
data mining
semiconductor manufacturing
quality control
yield improvement
fault detection
process control
multi-phase residual recursive model
multi-mode model
process monitoring
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557491503321
Reis Marco S  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Hyperspectral Data Exploitation
Advances in Hyperspectral Data Exploitation
Autore Chang Chein-I
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (434 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato hyperspectral image few-shot classification
deep learning
meta-learning
relation network
convolutional neural network
constrained-target optimal index factor band selection (CTOIFBS)
hyperspectral image
underwater spectral imaging system
underwater hyperspectral target detection
band selection (BS)
constrained energy minimization (CEM)
lightweight convolutional neural networks
hyperspectral imagery classification
transfer learning
air temperature
spatial measurement
FTIR
MWIR
carbon dioxide absorption
target detection
coffee beans
insect damage
hyperspectral imaging
band selection
visualization
color formation models
multispectral image
image fusion
joint tensor decomposition
anomaly detection
constrained sparse representation
hyperspectral imagery
moving target detection
spatio-temporal processing
hyperspectral remote sensing
image classification
constraint representation
superpixel segmentation
multiscale decision fusion
plug-and-play
denoising
nonlinear unmixing
spectral reconstruction
residual augmented attentional u-shape network
spatial augmented attention
channel augmented attention
boundary-aware constraint
atmospheric transmittance
temperature
emissivity
separation
midwave infrared
hyperspectral images
hyperspectral image super-resolution
data fusion
spectral-spatial residual network
self-supervised training
hyperspectral
vegetation
generative adversarial network
data augmentation
classification
rice leaf blast
hyperspectral imaging data
deep convolutional neural networks
fused features
evolutionary computation
heuristic algorithms
machine learning
unmanned aerial vehicles (UAVs)
vegetation mapping
upland swamps
mine environment
rice
rice leaf folder
hyperspectral image classification
change detection
self-supervised learning
attention mechanism
multi-source image fusion
SFIM
least square estimation
spatial filter
hyperspectral imaging (HSI)
hyperspectral target detection
hyperspectral reconstruction
hyperspectral unmixing
ISBN 3-0365-5796-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637782203321
Chang Chein-I  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Intelligence for Multimedia Signal Processing
Artificial Intelligence for Multimedia Signal Processing
Autore Kim Byung-Gyu
Pubbl/distr/stampa Basel, : MDPI Books, 2022
Descrizione fisica 1 electronic resource (212 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato human-height estimation
depth video
depth 3D conversion
artificial intelligence
convolutional neural networks
deep neural network
convolutional neural network
environmental sound recognition
feature combination
multimodal joint representation
content curation social networks
different recommend tasks
content based recommend systems
scene/place classification
semantic segmentation
deep learning
weighting matrix
speech enhancement
generative adversarial network
relativistic GAN
lightweight neural network
single image super-resolution
image enhancement
image restoration
residual dense networks
visual sentiment analysis
sentiment classification
graph convolutional networks
generative adversarial networks
traffic surveillance image processing
image de-raining
fluency evaluation
speech recognition
data augmentation
variational autoencoder
speech conversion
heartbeat classification
convolutional neural network (CNN)
canonical correlation analysis (CCA)
Indian Sign Language (ISL)
natural language processing
avatar
sign movement
context-free grammar
object detection
logical story unit detection (LSU)
object re-ID
computer vision
image processing
single image artifacts reduction
dense networks
residual networks
channel attention networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595077003321
Kim Byung-Gyu  
Basel, : MDPI Books, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data Science and Knowledge Discovery
Data Science and Knowledge Discovery
Autore Portela Filipe
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (254 p.)
Soggetto topico Information technology industries
Computer science
Soggetto non controllato crisis reporting
chatbots
journalists
news media
COVID-19
textbook research
digital humanities
digital infrastructures
data analysis
content base image retrieval
semantic information retrieval
deep features
multimedia document retrieval
data science
open government data
governance and social institutions
economic determinants of open data
geoinformation technology
fractal dimension
territorial road network
box-counting framework
script Python
ArcGIS
internet of things
LoRaWAN
ICT
The Things Network
ESP32 microcontroller
decision systems
rule based systems
databases
rough sets
prediction by partial matching
spatio-temporal
activity recognition
smart homes
artificial intelligence
automation
e-commerce
machine learning
big data
customer relationship management (CRM)
distracted driving
driving behavior
driving operation area
data augmentation
feature extraction
authorship
text mining
attribution
neural networks
deep learning
forensic intelligence
dashboard
WebGIS
data analytics
SARS-CoV-2
Big Data
Web Intelligence
media analytics
social sciences
humanities
linked open data
adaptation process
interdisciplinary research
media criticism
classification
information systems
public health
data mining
ioCOVID19
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576878103321
Portela Filipe  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning in Medical Image Analysis
Deep Learning in Medical Image Analysis
Autore Zhang Yudong
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (458 p.)
Soggetto non controllato interpretable/explainable machine learning
image classification
image processing
machine learning models
white box
black box
cancer prediction
deep learning
multimodal learning
convolutional neural networks
autism
fMRI
texture analysis
melanoma
glcm matrix
machine learning
classifiers
explainability
explainable AI
XAI
medical imaging
diagnosis
ARMD
change detection
unsupervised learning
microwave breast imaging
image reconstruction
tumor detection
digital pathology
whole slide image processing
multiple instance learning
deep learning classification
HER2
medical images
transfer learning
optimizers
neo-adjuvant treatment
tumour cellularity
cancer
breast cancer
diagnostics
imaging
computation
artificial intelligence
3D segmentation
active surface
discriminant analysis
PET imaging
medical image analysis
brain tumor
cervical cancer
colon cancer
lung cancer
computer vision
musculoskeletal images
lung disease detection
taxonomy
convolutional neural network
CycleGAN
data augmentation
dermoscopic images
domain transfer
macroscopic images
skin lesion segmentation
infection detection
COVID-19
X-ray images
bayesian inference
shifted-scaled dirichlet distribution
MCMC
gibbs sampling
object detection
surgical tools
open surgery
egocentric camera
computers in medicine
segmentation
MRI
ECG signal detection
portable monitoring devices
1D-convolutional neural network
medical image segmentation
domain adaptation
meta-learning
U-Net
computed tomography (CT)
magnetic resonance imaging (MRI)
low-dose
sparse-angle
quantitative comparison
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557435103321
Zhang Yudong  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning-Based Action Recognition
Deep Learning-Based Action Recognition
Autore Lee Hyo Jong
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (240 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato human action recognition
graph convolution
high-order feature
spatio-temporal feature
feature fusion
dynamic gesture recognition
multi-modalities network
class regularization
3D-CNN
spatiotemporal activations
class-specific features
Dynamic Hand Gesture Recognition
human-computer interaction
hand shape features
pose estimation
stacked hourglass network
deep learning
convolutional receptive field
hand gesture recognition
human-machine interface
artificial intelligence
feedforward neural networks
spatio-temporal image formation
human activity recognition
fusion strategies
transfer learning
activity recognition
data augmentation
multi-person pose estimation
partitioned centerpose network
partition pose representation
continuous hand gesture recognition
gesture spotting
gesture classification
multi-modal features
3D skeletal
CNN
spatiotemporal feature
embedded system
real-time
action recognition
Long Short-Term Memory
spatio-temporal differential
ISBN 3-0365-5200-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619465803321
Lee Hyo Jong  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning-Based Machinery Fault Diagnostics
Deep Learning-Based Machinery Fault Diagnostics
Autore Chen Hongtian
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (290 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato process monitoring
dynamics
variable time lag
dynamic autoregressive latent variables model
sintering process
hammerstein output-error systems
auxiliary model
multi-innovation identification theory
fractional-order calculus theory
canonical variate analysis
disturbance detection
power transmission system
k-nearest neighbor analysis
statistical local analysis
intelligent fault diagnosis
stacked pruning sparse denoising autoencoder
convolutional neural network
anti-noise
flywheel fault diagnosis
belief rule base
fuzzy fault tree analysis
Bayesian network
evidential reasoning
aluminum reduction process
alumina concentration
subspace identification
distributed predictive control
spatiotemporal feature fusion
gated recurrent unit
attention mechanism
fault diagnosis
evidential reasoning rule
system modelling
information transformation
parameter optimization
event-triggered control
interval type-2 Takagi-Sugeno fuzzy model
nonlinear networked systems
filter
gearbox fault diagnosis
convolution fusion
state identification
PSO
wavelet mutation
LSSVM
data-driven
operational optimization
case-based reasoning
local outlier factor
abnormal case removal
bearing fault detection
deep residual network
data augmentation
canonical correlation analysis
just-in-time learning
fault detection
high-speed trains
autonomous underwater vehicle
thruster fault diagnostics
fault tolerant control
robust optimization
ocean currents
ISBN 3-0365-5174-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469103321
Chen Hongtian  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Image and Video Processing and Recognition Based on Artificial Intelligence
Image and Video Processing and Recognition Based on Artificial Intelligence
Autore Park Kang Ryoung
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (431 p.)
Soggetto topico Technology: general issues
Soggetto non controllato emotion recognition
brain computer interface
bag of deep features
continuous wavelet transform
face image analysis
deep learning
face parsing
facial attributes classification
building extraction
convolutional neural networks
mask R-CNN
high-resolution remote sensing image
autoencoders
semi-supervised learning
computer vision
pathology
epidermis
skin
image processing
generative models
generative adversarial net
depth map
super-resolution
guidance
residual network
channel interaction
pose estimation
body orientation
multi-person
multi-task
surface defect detection
active learning
generative adversarial network
presentation attack detection
artificial image generation
presentation attack face images
ultrasound image
malignant thyroid nodule
artificial intelligence
weighted binary cross-entropy loss
infrared circumferential scanning system
target recognition
deep convolutional neural networks
data augmentation
transfer learning
bounding box regression
loss function
medical image fusion
convolutional neural network
image pyramid
multi-scale decomposition
armature
surface inspection
action recognition
social robotics
common spatial patterns
vehicle recognition
multi resolution network
optimization
semantic segmentation
global context
local context
fully convolutional networks
image-to-image conversion
image de-raining
label to photos
edges to photos
generative adversarial network (GAN)
remote sensing
helicopter footage
crowd counting
multitask learning
normalized cross-correlation
Marr wavelets
entropy and response
graph matching
RANSAC
GC–LSTM model
typhoon
satellite image
prediction system
monocular depth estimation
feature distillation
joint attention
finger-vein recognition
camera position
finger position
lighting
unobserved database
heterogeneous database
domain adaptation
cycle-consistent adversarial networks
SDUMLA-HMT-DB
HKPolyU-DB
biometrics
face recognition
single-sample face recognition
binarized statistical image features
K-nearest neighbors
sparse coding
fast approximation
homotopy iterative hard thresholding
object recognition
character recognition
orthogonal polynomials
orthogonal moments
Krawtchouk polynomials
Tchebichef polynomials
support vector machine
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557371203321
Park Kang Ryoung  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Sensors for Human Motion Analysis
Intelligent Sensors for Human Motion Analysis
Autore Krzeszowski Tomasz
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (382 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato gait recognition
biometrics
regularized discriminant analysis
particle swarm optimization
grey wolf optimization
whale optimization algorithm
FMCW
vital sign
XGBoost
MFCC
COVID-19
3D human pose estimation
deep learning
generalization
optical sensing principle
modular sensing unit
plantar pressure measurement
gait parameters
3D human mesh reconstruction
deep neural network
motion capture
neural networks
reconstruction
gap filling
FFNN
LSTM
BILSTM
GRU
pose estimation
movement tracking
computer vision
artificial intelligence
markerless motion capture
assessment
kinematics
development
machine learning
human action recognition
features fusion
features selection
recognition
fall risk detection
balance
Berg Balance Scale
human tracking
elderly
telemedicine
diagnosis
precedence indicator
knowledge measure
fuzzy inference
rule induction
posture detection
aggregation function
markerless
human motion analysis
gait analysis
data augmentation
skeletal data
time series classification
EMG
pattern recognition
robot
cyber-physical systems
RGB-D sensors
human motion modelling
F-Formation
Kinect v2
Azure Kinect
Zed 2i
socially occupied space
facial expression recognition
facial landmarks
action units
convolutional neural networks
graph convolutional networks
artifact classification
artifact detection
anomaly detection
3D multi-person pose estimation
absolute poses
camera-centric coordinates
deep-learning
ISBN 3-0365-5074-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469003321
Krzeszowski Tomasz  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui