AI Applications to Power Systems
| AI Applications to Power Systems |
| Autore | Tjing Lie Tek |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (156 p.) |
| Soggetto topico |
History of engineering & technology
Technology: general issues |
| Soggetto non controllato |
artificial neural networks
automatic P2P energy trading cellular computational networks change detection contingency data analytics data mining deep Q-network deep reinforcement learning dynamic mode decomposition event detection feature extraction filtering fuzzy system inter-area oscillations load flow prediction long short-term delayed reward machine learning machine-learning manta ray foraging optimization algorithm Markov decision process modal analysis multi-objective function n/a optimal power flow optimization optimization techniques power quality radial networks reduced order modeling self-healing grid signal processing situation awareness steady-state security assessment total variation smoothing |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910566478903321 |
Tjing Lie Tek
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data Science and Knowledge Discovery
| Data Science and Knowledge Discovery |
| Autore | Portela Filipe |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (254 p.) |
| Soggetto topico |
Computer science
Information technology industries |
| Soggetto non controllato |
activity recognition
adaptation process ArcGIS artificial intelligence attribution authorship automation big data Big Data box-counting framework chatbots classification content base image retrieval COVID-19 crisis reporting customer relationship management (CRM) dashboard data analysis data analytics data augmentation data mining data science databases decision systems deep features deep learning digital humanities digital infrastructures distracted driving driving behavior driving operation area e-commerce economic determinants of open data ESP32 microcontroller feature extraction forensic intelligence fractal dimension geoinformation technology governance and social institutions humanities ICT information systems interdisciplinary research internet of things ioCOVID19 journalists linked open data LoRaWAN machine learning media analytics media criticism multimedia document retrieval n/a neural networks news media open government data prediction by partial matching public health rough sets rule based systems SARS-CoV-2 script Python semantic information retrieval smart homes social sciences spatio-temporal territorial road network text mining textbook research The Things Network Web Intelligence WebGIS |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910576878103321 |
Portela Filipe
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data Science for IoT Engineers : A Systems Analytics Approach
| Data Science for IoT Engineers : A Systems Analytics Approach |
| Autore | Madhavan P. G |
| Pubbl/distr/stampa | Bloomfield : , : Mercury Learning & Information, , 2021 |
| Descrizione fisica | 1 online resource (170 pages) |
| Disciplina | 006.312024004678 |
| Soggetto topico | COMPUTERS / Desktop Applications / Presentation Software |
| Soggetto non controllato |
IOT
MATLAB computer science data analytics engineering mathematics physics |
| ISBN |
1-68392-640-4
1-68392-641-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- About the Author -- PART I Machine Learning from Multiple Perspectives -- CHAPTER 1 Overview of Data Science -- CHAPTER 2 Introduction to Machine Learning -- CHAPTER 3 Systems Theory, Linear Algebra, and Analytics Basics -- CHAPTER 4 “Modern” Machine Learning -- PART II Systems Analytics -- CHAPTER 5 Systems Theory Foundations of Machine Learning -- CHAPTER 6 State Space Model and Bayes Filter -- CHAPTER 7 The Kalman Filter for Adaptive Machine Learning -- CHAPTER 8 The Need for Dynamical Machine Learning: The Bayesian Exact Recursive Estimation -- CHAPTER 9 Digital Twins -- Epilogue A New Random Field Theory -- Index |
| Record Nr. | UNINA-9910795555703321 |
Madhavan P. G
|
||
| Bloomfield : , : Mercury Learning & Information, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data Science for IoT Engineers : A Systems Analytics Approach
| Data Science for IoT Engineers : A Systems Analytics Approach |
| Autore | Madhavan P. G |
| Pubbl/distr/stampa | Bloomfield : , : Mercury Learning & Information, , 2021 |
| Descrizione fisica | 1 online resource (170 pages) |
| Disciplina | 006.312024004678 |
| Soggetto topico | COMPUTERS / Desktop Applications / Presentation Software |
| Soggetto non controllato |
IOT
MATLAB computer science data analytics engineering mathematics physics |
| ISBN |
1-68392-640-4
1-68392-641-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- About the Author -- PART I Machine Learning from Multiple Perspectives -- CHAPTER 1 Overview of Data Science -- CHAPTER 2 Introduction to Machine Learning -- CHAPTER 3 Systems Theory, Linear Algebra, and Analytics Basics -- CHAPTER 4 “Modern” Machine Learning -- PART II Systems Analytics -- CHAPTER 5 Systems Theory Foundations of Machine Learning -- CHAPTER 6 State Space Model and Bayes Filter -- CHAPTER 7 The Kalman Filter for Adaptive Machine Learning -- CHAPTER 8 The Need for Dynamical Machine Learning: The Bayesian Exact Recursive Estimation -- CHAPTER 9 Digital Twins -- Epilogue A New Random Field Theory -- Index |
| Record Nr. | UNINA-9910810050903321 |
Madhavan P. G
|
||
| Bloomfield : , : Mercury Learning & Information, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dealing with Data Pocket Primer
| Dealing with Data Pocket Primer |
| Autore | Campesato Oswald |
| Pubbl/distr/stampa | Bloomfield : , : Mercury Learning & Information, , 2022 |
| Descrizione fisica | 1 online resource (246 pages) |
| Disciplina | 001.42 |
| Collana | Computing |
| Soggetto topico |
Quantitative research - Reliability
Quantitative research - Data processing |
| Soggetto non controllato |
NLP
Pandas RDBMS SQL computer science data analytics data cleaning data visualization programming python statistics |
| ISBN |
1-5231-4740-7
1-68392-818-0 1-68392-819-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter 1: Introduction to Probability and Statistics -- Chapter 2: Working with Data -- Chapter 3: Introduction to Pandas -- Chapter 4: Introduction to RDBMS and SQL -- Chapter 5: Working with SQL and MySQL -- Chapter 6: NLP and Data Cleaning -- Chapter 7: Data Visualization -- Index |
| Record Nr. | UNINA-9910795724303321 |
Campesato Oswald
|
||
| Bloomfield : , : Mercury Learning & Information, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dealing with Data Pocket Primer
| Dealing with Data Pocket Primer |
| Autore | Campesato Oswald |
| Pubbl/distr/stampa | Bloomfield : , : Mercury Learning & Information, , 2022 |
| Descrizione fisica | 1 online resource (246 pages) |
| Disciplina | 001.42 |
| Collana | Computing |
| Soggetto topico |
Quantitative research - Reliability
Quantitative research - Data processing |
| Soggetto non controllato |
NLP
Pandas RDBMS SQL computer science data analytics data cleaning data visualization programming python statistics |
| ISBN |
1-5231-4740-7
1-68392-818-0 1-68392-819-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter 1: Introduction to Probability and Statistics -- Chapter 2: Working with Data -- Chapter 3: Introduction to Pandas -- Chapter 4: Introduction to RDBMS and SQL -- Chapter 5: Working with SQL and MySQL -- Chapter 6: NLP and Data Cleaning -- Chapter 7: Data Visualization -- Index |
| Record Nr. | UNINA-9910823375903321 |
Campesato Oswald
|
||
| Bloomfield : , : Mercury Learning & Information, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Industrial Applications: New Solutions for the New Era
| Industrial Applications: New Solutions for the New Era |
| Autore | de Sales Guerra Tsuzuki Marcos |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (270 p.) |
| Soggetto topico |
History of engineering & technology
Technology: general issues |
| Soggetto non controllato |
artificial intelligence
asset administration shell benchmarking big data and analytics computer vision control strategy convolutional neural networks coordinate metrology COVID-19 data analytics data models database depth image digital manufacturing digital twin electrical machines electrical maintenance ensemble learning exoskeletons fault detection fever frequency inverter fuzzy goal-oriented requirements engineering image classification induction machines industry Industry 4.0 integrated inspection system intelligent systems IoT machine learning microgrid model-based systems engineering MLOps noise reduction operation and maintenance optical scanning Petri net photovoltaics PID controller prediction propagation velocity renewable energy ROS safety instrumented system service systems SVPWM modulation synthetic data test bench thermography UAV ultrasound uncertainty vector control ventricular assist device Bayesian network warehouse management water content water-in-crude oil emulsion |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Industrial Applications |
| Record Nr. | UNINA-9910566468403321 |
de Sales Guerra Tsuzuki Marcos
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Knowledge Graphs and Big Data Processing [[electronic resource] /] / edited by Valentina Janev, Damien Graux, Hajira Jabeen, Emanuel Sallinger
| Knowledge Graphs and Big Data Processing [[electronic resource] /] / edited by Valentina Janev, Damien Graux, Hajira Jabeen, Emanuel Sallinger |
| Autore | Janev Valentina |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Springer Nature, 2020 |
| Descrizione fisica | 1 online resource (XI, 209 p. 39 illus., 32 illus. in color.) |
| Disciplina | 005.74 |
| Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
| Soggetto topico |
Database management
Application software Artificial intelligence Computer logic Management information systems Database Management Information Systems Applications (incl. Internet) Logic in AI Computer Appl. in Administrative Data Processing Business Information Systems |
| Soggetto non controllato |
Database Management
Information Systems Applications (incl. Internet) Logic in AI Computer Appl. in Administrative Data Processing Business Information Systems Computer and Information Systems Applications Computer Application in Administrative Data Processing artificial intelligence big data data analytics data handling data integration data mining databases digital storage domain knowledge graph theory information management information technology integrated data internet knowledge management knowledge-based system ontologies semantics Databases Database programming Information retrieval Internet searching Artificial intelligence Public administration Information technology: general issues Business mathematics & systems |
| ISBN | 3-030-53199-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Foundations -- Chapter 1. Ecosystem of Big Data -- Chapter 2. Knowledge Graphs: The Layered Perspective -- Chapter 3. Big Data Outlook, Tools, and Architectures -- Architecture -- Chapter 4. Creation of Knowledge Graphs -- Chapter 5. Federated Query Processing -- Chapter 6. Reasoning in Knowledge Graphs: An Embeddings Spotlight -- Methods and Solutions -- Chapter 7. Scalable Knowledge Graph Processing using SANSA -- Chapter 8. Context-Based Entity Matching for Big Data -- Applications -- Chapter 9. Survey on Big Data Applications -- Chapter 10. Case Study from the Energy Domain. |
| Record Nr. | UNISA-996418289903316 |
Janev Valentina
|
||
| Springer Nature, 2020 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Open Data and Energy Analytics
| Open Data and Energy Analytics |
| Autore | Nastasi Benedetto |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (218 p.) |
| Soggetto topico | Research and information: general |
| Soggetto non controllato |
artificial neural network
big data building dataset building performance simulation building stock buildings classification clustering collaborative work data analytics data envelopment analysis data mining data pre- and post-processing data-aware planning data-handling decision tree district heating domestic hot water electrification modelling energy energy consumption energy data energy efficiency energy management energy mapping energy modelling energy performance certificate energy planning energy potential mapping energy-consuming activities EU28 factor analysis forecasting heat density map heat map heating heating energy demand integrated assessment modelling kNN Kohonen self-organizing maps machine learning Malawi market assessment MESSAGEix model calibration multiple regression OnSSET ontology open data open data analytics open energy governance open modelling and data parametric modelling Passive House pattern recognition polygeneration random forest regression reproducibility smart cities social media space heating spatial analysis spatial planning support vector machine urban database urban energy atlas urban energy transition |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557116603321 |
Nastasi Benedetto
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Smart Urban Water Networks
| Smart Urban Water Networks |
| Autore | Creaco Enrico |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (358 p.) |
| Soggetto topico | Technology: general issues |
| Soggetto non controllato |
agent-based modeling
blind sources separation chaotic time series cluster analysis clustering comparative analysis cross-correlation cyber wellness cyber-attack detection cyber-physical attacks cyber-physical security cyber-security data analytics data resolution data science data spatial aggregation decentralized water supply DEMATEL district metered area dual reticulation entropy error correction FastICA fault identification finite population effect flooding detection framework hybrid model hydraulic measure hydraulic modelling hydraulic transient Internet of Things inverse transient analysis (ITA) leakage least square support vector machine machine learning metering multi-criteria decision analysis (MCDA) multi-criteria decision-making n/a network sectorization nitrate nitrite optimal sensor placement optimization approach pressure control valve pressure management rainwater harvesting reliability index remote real-time control sample mean sampling design sensitivity smart city smart meter smart stormwater smart water system smart water systems smartness standard error stochastic analysis stochastic consumption topological centrality uncertainty urban water consumption urban water management water data accessibility water demand data water demand forecasting water demand peak factor water distribution monitoring water distribution network water distribution network (WDN) water distribution networks water distribution system water distribution systems water network partitioning water quality monitoring water trading water treatment plant wireless sensor networks |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557333303321 |
Creaco Enrico
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||