AI Applications to Power Systems |
Autore | Tjing Lie Tek |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (156 p.) |
Soggetto topico |
Technology: general issues
History of engineering & technology |
Soggetto non controllato |
self-healing grid
machine-learning feature extraction event detection optimization techniques manta ray foraging optimization algorithm multi-objective function radial networks optimal power flow automatic P2P energy trading Markov decision process deep reinforcement learning deep Q-network long short-term delayed reward inter-area oscillations modal analysis reduced order modeling dynamic mode decomposition machine learning artificial neural networks steady-state security assessment situation awareness cellular computational networks load flow prediction contingency fuzzy system change detection data analytics data mining filtering optimization power quality signal processing total variation smoothing |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910566478903321 |
Tjing Lie Tek | ||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Data Science and Knowledge Discovery |
Autore | Portela Filipe |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (254 p.) |
Soggetto topico |
Information technology industries
Computer science |
Soggetto non controllato |
crisis reporting
chatbots journalists news media COVID-19 textbook research digital humanities digital infrastructures data analysis content base image retrieval semantic information retrieval deep features multimedia document retrieval data science open government data governance and social institutions economic determinants of open data geoinformation technology fractal dimension territorial road network box-counting framework script Python ArcGIS internet of things LoRaWAN ICT The Things Network ESP32 microcontroller decision systems rule based systems databases rough sets prediction by partial matching spatio-temporal activity recognition smart homes artificial intelligence automation e-commerce machine learning big data customer relationship management (CRM) distracted driving driving behavior driving operation area data augmentation feature extraction authorship text mining attribution neural networks deep learning forensic intelligence dashboard WebGIS data analytics SARS-CoV-2 Big Data Web Intelligence media analytics social sciences humanities linked open data adaptation process interdisciplinary research media criticism classification information systems public health data mining ioCOVID19 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910576878103321 |
Portela Filipe | ||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Data Science for IoT Engineers : A Systems Analytics Approach |
Autore | Madhavan P. G |
Pubbl/distr/stampa | Bloomfield : , : Mercury Learning & Information, , 2021 |
Descrizione fisica | 1 online resource (170 pages) |
Disciplina | 006.312024004678 |
Soggetto topico | COMPUTERS / Desktop Applications / Presentation Software |
Soggetto non controllato |
IOT
MATLAB computer science data analytics engineering mathematics physics |
ISBN |
1-68392-640-4
1-68392-641-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- About the Author -- PART I Machine Learning from Multiple Perspectives -- CHAPTER 1 Overview of Data Science -- CHAPTER 2 Introduction to Machine Learning -- CHAPTER 3 Systems Theory, Linear Algebra, and Analytics Basics -- CHAPTER 4 “Modern” Machine Learning -- PART II Systems Analytics -- CHAPTER 5 Systems Theory Foundations of Machine Learning -- CHAPTER 6 State Space Model and Bayes Filter -- CHAPTER 7 The Kalman Filter for Adaptive Machine Learning -- CHAPTER 8 The Need for Dynamical Machine Learning: The Bayesian Exact Recursive Estimation -- CHAPTER 9 Digital Twins -- Epilogue A New Random Field Theory -- Index |
Record Nr. | UNINA-9910795555703321 |
Madhavan P. G | ||
Bloomfield : , : Mercury Learning & Information, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Data Science for IoT Engineers : A Systems Analytics Approach |
Autore | Madhavan P. G |
Pubbl/distr/stampa | Bloomfield : , : Mercury Learning & Information, , 2021 |
Descrizione fisica | 1 online resource (170 pages) |
Disciplina | 006.312024004678 |
Soggetto topico | COMPUTERS / Desktop Applications / Presentation Software |
Soggetto non controllato |
IOT
MATLAB computer science data analytics engineering mathematics physics |
ISBN |
1-68392-640-4
1-68392-641-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- About the Author -- PART I Machine Learning from Multiple Perspectives -- CHAPTER 1 Overview of Data Science -- CHAPTER 2 Introduction to Machine Learning -- CHAPTER 3 Systems Theory, Linear Algebra, and Analytics Basics -- CHAPTER 4 “Modern” Machine Learning -- PART II Systems Analytics -- CHAPTER 5 Systems Theory Foundations of Machine Learning -- CHAPTER 6 State Space Model and Bayes Filter -- CHAPTER 7 The Kalman Filter for Adaptive Machine Learning -- CHAPTER 8 The Need for Dynamical Machine Learning: The Bayesian Exact Recursive Estimation -- CHAPTER 9 Digital Twins -- Epilogue A New Random Field Theory -- Index |
Record Nr. | UNINA-9910810050903321 |
Madhavan P. G | ||
Bloomfield : , : Mercury Learning & Information, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Dealing with Data Pocket Primer |
Autore | Campesato Oswald |
Pubbl/distr/stampa | Bloomfield : , : Mercury Learning & Information, , 2022 |
Descrizione fisica | 1 online resource (246 pages) |
Disciplina | 001.42 |
Collana | Computing |
Soggetto topico |
Quantitative research - Reliability
Quantitative research - Data processing |
Soggetto non controllato |
NLP
Pandas RDBMS SQL computer science data analytics data cleaning data visualization programming python statistics |
ISBN |
1-5231-4740-7
1-68392-818-0 1-68392-819-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter 1: Introduction to Probability and Statistics -- Chapter 2: Working with Data -- Chapter 3: Introduction to Pandas -- Chapter 4: Introduction to RDBMS and SQL -- Chapter 5: Working with SQL and MySQL -- Chapter 6: NLP and Data Cleaning -- Chapter 7: Data Visualization -- Index |
Record Nr. | UNINA-9910795724303321 |
Campesato Oswald | ||
Bloomfield : , : Mercury Learning & Information, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Dealing with Data Pocket Primer |
Autore | Campesato Oswald |
Pubbl/distr/stampa | Bloomfield : , : Mercury Learning & Information, , 2022 |
Descrizione fisica | 1 online resource (246 pages) |
Disciplina | 001.42 |
Collana | Computing |
Soggetto topico |
Quantitative research - Reliability
Quantitative research - Data processing |
Soggetto non controllato |
NLP
Pandas RDBMS SQL computer science data analytics data cleaning data visualization programming python statistics |
ISBN |
1-5231-4740-7
1-68392-818-0 1-68392-819-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter 1: Introduction to Probability and Statistics -- Chapter 2: Working with Data -- Chapter 3: Introduction to Pandas -- Chapter 4: Introduction to RDBMS and SQL -- Chapter 5: Working with SQL and MySQL -- Chapter 6: NLP and Data Cleaning -- Chapter 7: Data Visualization -- Index |
Record Nr. | UNINA-9910823375903321 |
Campesato Oswald | ||
Bloomfield : , : Mercury Learning & Information, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Industrial Applications: New Solutions for the New Era |
Autore | de Sales Guerra Tsuzuki Marcos |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (270 p.) |
Soggetto topico |
Technology: general issues
History of engineering & technology |
Soggetto non controllato |
induction machines
electrical machines vector control SVPWM modulation frequency inverter artificial intelligence photovoltaics fault detection machine learning operation and maintenance renewable energy water-in-crude oil emulsion water content ultrasound propagation velocity exoskeletons test bench industry benchmarking microgrid model-based systems engineering service systems goal-oriented requirements engineering safety instrumented system ventricular assist device Bayesian network Petri net control strategy UAV fuzzy PID controller ROS Industry 4.0 database data models big data and analytics asset administration shell MLOps digital twin IoT prediction coordinate metrology optical scanning noise reduction digital manufacturing integrated inspection system data analytics uncertainty convolutional neural networks warehouse management image classification ensemble learning synthetic data depth image electrical maintenance COVID-19 thermography fever computer vision intelligent systems |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Industrial Applications |
Record Nr. | UNINA-9910566468403321 |
de Sales Guerra Tsuzuki Marcos | ||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Knowledge Graphs and Big Data Processing [[electronic resource] /] / edited by Valentina Janev, Damien Graux, Hajira Jabeen, Emanuel Sallinger |
Autore | Janev Valentina |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Springer Nature, 2020 |
Descrizione fisica | 1 online resource (XI, 209 p. 39 illus., 32 illus. in color.) |
Disciplina | 005.74 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Database management
Application software Artificial intelligence Computer logic Management information systems Database Management Information Systems Applications (incl. Internet) Logic in AI Computer Appl. in Administrative Data Processing Business Information Systems |
Soggetto non controllato |
Database Management
Information Systems Applications (incl. Internet) Logic in AI Computer Appl. in Administrative Data Processing Business Information Systems Computer and Information Systems Applications Computer Application in Administrative Data Processing artificial intelligence big data data analytics data handling data integration data mining databases digital storage domain knowledge graph theory information management information technology integrated data internet knowledge management knowledge-based system ontologies semantics Databases Database programming Information retrieval Internet searching Artificial intelligence Public administration Information technology: general issues Business mathematics & systems |
ISBN | 3-030-53199-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Foundations -- Chapter 1. Ecosystem of Big Data -- Chapter 2. Knowledge Graphs: The Layered Perspective -- Chapter 3. Big Data Outlook, Tools, and Architectures -- Architecture -- Chapter 4. Creation of Knowledge Graphs -- Chapter 5. Federated Query Processing -- Chapter 6. Reasoning in Knowledge Graphs: An Embeddings Spotlight -- Methods and Solutions -- Chapter 7. Scalable Knowledge Graph Processing using SANSA -- Chapter 8. Context-Based Entity Matching for Big Data -- Applications -- Chapter 9. Survey on Big Data Applications -- Chapter 10. Case Study from the Energy Domain. |
Record Nr. | UNISA-996418289903316 |
Janev Valentina | ||
Springer Nature, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Knowledge Graphs and Big Data Processing / / edited by Valentina Janev, Damien Graux, Hajira Jabeen, Emanuel Sallinger |
Autore | Janev Valentina |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Springer Nature, 2020 |
Descrizione fisica | 1 online resource (XI, 209 p. 39 illus., 32 illus. in color.) |
Disciplina | 005.74 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Database management
Application software Artificial intelligence Computer logic Management information systems Database Management Information Systems Applications (incl. Internet) Logic in AI Computer Appl. in Administrative Data Processing Business Information Systems |
Soggetto non controllato |
Database Management
Information Systems Applications (incl. Internet) Logic in AI Computer Appl. in Administrative Data Processing Business Information Systems Computer and Information Systems Applications Computer Application in Administrative Data Processing artificial intelligence big data data analytics data handling data integration data mining databases digital storage domain knowledge graph theory information management information technology integrated data internet knowledge management knowledge-based system ontologies semantics Databases Database programming Information retrieval Internet searching Artificial intelligence Public administration Information technology: general issues Business mathematics & systems |
ISBN | 3-030-53199-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Foundations -- Chapter 1. Ecosystem of Big Data -- Chapter 2. Knowledge Graphs: The Layered Perspective -- Chapter 3. Big Data Outlook, Tools, and Architectures -- Architecture -- Chapter 4. Creation of Knowledge Graphs -- Chapter 5. Federated Query Processing -- Chapter 6. Reasoning in Knowledge Graphs: An Embeddings Spotlight -- Methods and Solutions -- Chapter 7. Scalable Knowledge Graph Processing using SANSA -- Chapter 8. Context-Based Entity Matching for Big Data -- Applications -- Chapter 9. Survey on Big Data Applications -- Chapter 10. Case Study from the Energy Domain. |
Record Nr. | UNINA-9910413442003321 |
Janev Valentina | ||
Springer Nature, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Open Data and Energy Analytics |
Autore | Nastasi Benedetto |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (218 p.) |
Soggetto topico | Research & information: general |
Soggetto non controllato |
data envelopment analysis
Kohonen self-organizing maps factor analysis multiple regression energy efficiency social media energy-consuming activities energy consumption machine learning ontology energy performance certificate heating energy demand buildings data mining classification regression decision tree support vector machine random forest artificial neural network open data electrification modelling Malawi OnSSET MESSAGEix reproducibility collaborative work open modelling and data data-handling integrated assessment modelling data pre- and post-processing space heating domestic hot water market assessment EU28 district heating data analytics big data forecasting energy polygeneration clustering kNN pattern recognition heating building stock heat map spatial analysis heat density map building performance simulation parametric modelling energy management model calibration Passive House energy planning energy potential mapping urban energy atlas urban energy transition energy data data-aware planning spatial planning open data analytics smart cities open energy governance urban database energy mapping building dataset energy modelling |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557116603321 |
Nastasi Benedetto | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|