top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Autore Kisi Ozgur
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (238 p.)
Soggetto topico Research & information: general
Soggetto non controllato additive regression
artificial intelligence
artificial neural network
atmospheric reanalysis
bagging
Bayesian model averaging
big data
calibration
CWP
dagging
Daymet V3
EEFlux
ensemble modeling
extension principle
flood routing
fuzzy sets and systems
Google Earth Engine
Govindpur
groundwater
groundwater level prediction
hydroinformatics
hydrologic model
improved extreme learning machine (IELM)
irrigation performance
Kernel extreme learning machines
M5 model tree
machine learning
multivariate adaptive regression spline
Muskingum method
n/a
NDVI
neural network
nitrogen compound
nitrogen prediction
non-linear modeling
PACF
particle swarm optimization
prediction intervals
prediction models
principal component analysis
random subspace
rotation forest
satellite precipitation
sensitivity analysis
shortwave radiation flux density
South Korea
spatiotemporal variation
streamflow forecasting
streamflow simulation
support vector machine
sustainability
sustainable development
SVM-LF
SVM-RF
uncertainty
uncertainty analysis
ungauged basin
WANN
water conservation
water resources
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557448103321
Kisi Ozgur  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Advances in Geographic Information System for Earth Sciences
Recent Advances in Geographic Information System for Earth Sciences
Autore Choi Yosoon
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (264 p.)
Soggetto topico Research & information: general
Soggetto non controllato algorithm
bagging
cognition
computer languages
dagging
DEM grid cell size
do-it-yourself (DIY)
efficiency
ensemble techniques
environmental management
eye-tracking measurement
factor assessing
float cars
functional trees
gaze tracking
geo-sensor framework
geo-sensor platform (GIS)
Geographic information systems
GIS
GIS vector map data
GIS vector map security
GIS-coupled
Hilbert ordering decomposition
human-computer interaction
Indian Himalayas
land use
landslide susceptibility mapping
landslides
LBM
map overlay analysis
methane gas emission
mine development
mine operation
mine planning
mine reclamation
mine safety
mountainous watersheds
multi-functionality
obstacle factors
open source software
optimized parameter set
parallel algorithm
production-living-ecology function
rainstorm event
remote sensing
rotation forest
selective encryption
sensor networks
simplification method and cryptography
social media
spatial analysis
spatial community
spatiotemporal analysis
spatiotemporal dynamics
spatiotemporal model
symbols
taxi trajectory
TOPMODEL
traffic flows
transport system
visualisation
Xiangxi
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557575203321
Choi Yosoon  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui