top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Computational Intelligence for Object Detection, Feature Extraction and Recognition in Smart Sensor Environments
Advanced Computational Intelligence for Object Detection, Feature Extraction and Recognition in Smart Sensor Environments
Autore Woźniak Marcin
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (454 p.)
Soggetto topico Information technology industries
Soggetto non controllato 3D convolutional neural networks
3D imaging
activity measure
advanced driver assistance system (ADAS)
anchor box
artefacts
artificial bee colony
atrous convolution
augmented reality
automatic design
benchmark
bio-inspired techniques
brain hemorrhage
cascade classifier
cascaded center-ness
citrus
CNN
complex search request
computer vision
continuous casting
convolution neural networks (CNNs)
convolutional neural network
convolutional neural networks
cross-scale
CT brain
CT images
data acquisition
deep learning
deep sort
defect detection
deformable localization
drone detection
evidence chains
evolving connectionist systems
fabric defect
feature extraction
feature fusion
few shot learning
focal loss
generative adversarial network
grow-when-required neural network
hand gesture recognition
hepatic cancer
high-speed trains
human-robot interaction
Hungarian algorithm
hunting
image analysis
image processing
image recognition
industrial environments
information retriever sensor
InSAR
machine learning
marine systems
mixed kernels
multi-hop reasoning
multi-scale
multi-sensor fusion
n/a
nearest neighbor filtering
neural network
non-stationary
object detection
object detector
object tracking
one-class classifier
optical flows
parameter efficiency
pests and diseases identification
pixel convolution
pose estimation
reinforcement learning
RFI
semantic segmentation
ship classification
ship radiated noise
spatial pooling
spatiotemporal interest points
sports scene
superalloy tool
surface defects
surface electromyography (sEMG)
SVM
synthetic images
three-dimensional (3D) vision
thresholding
tool wear monitoring
Traffic sign detection and tracking (TSDR)
UAV detection
UAV imagery
underwater acoustics
unmanned aerial vehicles
vehicle detection
vehicular traffic congestion
vehicular traffic flow classification
vehicular traffic flow detection
video classification
video surveillance
visual detection
visual inspection
visual question answering
Yolo
YOLOv2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557360703321
Woźniak Marcin  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing in Agriculture: State-of-the-Art
Remote Sensing in Agriculture: State-of-the-Art
Autore Borgogno-Mondino Enrico
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (220 p.)
Soggetto topico Environmental science, engineering and technology
History of engineering and technology
Technology: general issues
Soggetto non controllato alpha angle
anisotropy
apple orchard damage
biomass
CDL
corn
crop height
crop management
crop Monitoring
crop water stress monitoring
crop yield prediction
cross-scale
data blending
digital number (DN)
DJI Phantom 4 Multispectral (P4M)
economic loss
entropy
feature selection
field phenotyping
gap-filling
Hidden Markov Random Field
HMRF
hyperspectral imaging
insurance support
Landsat
lodging
MODIS
northern Mongolia
oasis crop type mapping
Parrot Sequoia (Sequoia)
plant disease detection
polarimetric decomposition
precision agriculture (PA)
random forest (RF)
recursive feature increment (RFI)
red-edge spectral bands and indices
reflectance
remote sensing (RS)
remote sensing indices
SAR
Sentinel-1
Sentinel-1 and 2 integration
soil moisture Karnataka India
soil moisture semi-empirical model
soybean
spatial resolution
spectral angle mapper
spring wheat
statistically homogeneous pixels (SHPs)
storm damage mapping
support vector machine
support vector regression
Synthetic Aperture Radar
synthetic aperture radar (SAR)
thermal infrared (TIR)
thermal UAV RS
UAV
UAV-based LiDAR
unmanned aerial vehicles (UAVs)
vegetation index (VI)
vegetation status monitoring
volumetric soil moisture
winter wheat
yellow rust
yield estimation
ISBN 3-0365-5484-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Remote Sensing in Agriculture
Record Nr. UNINA-9910637779903321
Borgogno-Mondino Enrico  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui