top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning Applications with Practical Measured Results in Electronics Industries
Deep Learning Applications with Practical Measured Results in Electronics Industries
Autore Kung Hsu-Yang
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (272 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato A*
background model
binary classification
CNN
compressed sensing
computational intelligence
content reconstruction
convolutional network
data fusion
data partition
deep learning
digital shearography
discrete wavelet transform
dot grid target
eye-tracking device
faster region-based CNN
forecasting
foreign object
GA
gated recurrent unit
generative adversarial network
geometric errors
geometric errors correction
GSA-BP
human computer interaction
humidity sensor
hyperspectral image classification
image compression
image inpainting
image restoration
imaging confocal microscope
Imaging Confocal Microscope
information measure
instance segmentation
intelligent surveillance
intelligent tire manufacturing
K-means clustering
kinematic modelling
lateral stage errors
Least Squares method
long short-term memory
machine learning
MCM uncertainty evaluation
multiple constraints
multiple linear regression
multivariate temporal convolutional network
multivariate time series forecasting
neighborhood noise reduction
network layer contribution
neural audio caption
neural networks
neuro-fuzzy systems
nonlinear optimization
offshore wind
optimization techniques
oral evaluation
recommender system
reinforcement learning
residual networks
rigid body kinematics
saliency information
smart grid
supervised learning
tire bubble defects
tire quality assessment
trajectory planning
transfer learning
UAV
underground mines
unmanned aerial vehicle
unsupervised learning
update mechanism
update occasion
visual tracking
ISBN 3-03928-864-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404080403321
Kung Hsu-Yang  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing / Hyung-Sup Jung, Saro Lee
Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing / Hyung-Sup Jung, Saro Lee
Autore Jung Hyung-Sup
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (438 p.)
Soggetto topico Pharmaceutical chemistry and technology
Soggetto non controllato artificial neural network
model switching
sensitivity analysis
neural networks
logit boost
Qaidam Basin
land subsidence
land use/land cover (LULC)
naïve Bayes
multilayer perceptron
convolutional neural networks
single-class data descriptors
logistic regression
feature selection
mapping
particulate matter 10 (PM10)
Bayes net
gray-level co-occurrence matrix
multi-scale
Logistic Model Trees
classification
Panax notoginseng
large scene
coarse particle
grayscale aerial image
Gaofen-2
environmental variables
variable selection
spatial predictive models
weights of evidence
landslide prediction
random forest
boosted regression tree
convolutional network
Vietnam
model validation
colorization
data mining techniques
spatial predictions
SCAI
unmanned aerial vehicle
high-resolution
texture
spatial sparse recovery
landslide susceptibility map
machine learning
reproducible research
constrained spatial smoothing
support vector machine
random forest regression
model assessment
information gain
ALS point cloud
bagging ensemble
one-class classifiers
leaf area index (LAI)
landslide susceptibility
landsat image
ionospheric delay constraints
spatial spline regression
remote sensing image segmentation
panchromatic
Sentinel-2
remote sensing
optical remote sensing
materia medica resource
GIS
precise weighting
change detection
TRMM
traffic CO
crop
training sample size
convergence time
object detection
gully erosion
deep learning
classification-based learning
transfer learning
landslide
traffic CO prediction
hybrid model
winter wheat spatial distribution
logistic
alternating direction method of multipliers
hybrid structure convolutional neural networks
geoherb
predictive accuracy
real-time precise point positioning
spectral bands
ISBN 9783039212163
3039212168
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367564103321
Jung Hyung-Sup  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui