top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics
Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics
Autore Tutone Marco
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (387 p.)
Soggetto topico Chemistry
Research & information: general
Soggetto non controllato 3CL-Pro
3D-QSAR
acetylcholinesterase
aging progression mechanism
Alzheimer's disease
aminophenylbenzamide
antibody:antigen interactions
antivirals
binding free energies
binding site
binding space
carbon nanotubes
cholesterol
computational biology
consensus models
COVID-19
COX-2 inhibitors
deep learning
diabetes
docking simulations
doxorubicin encapsulation
drug delivery system
drug discovery
drug repositioning
drug repositioning approaches
drug repurposing
drug resistance
drug-resistance mutations
dual mode of action
dual-target lead discovery
epitope binning
epitope mapping
epitope prediction
FimH
fingerprints
gene expression signature
genome-wide genetic and epigenetic network (GWGEN)
glycoprotein D (gD)
haeckelite defects
HDACs
hERG toxicity
herpes simplex virus fusion proteins
high-throughput virtual screening
HIV-2 protease
homology modeling
hTSPO
human dihydrofolate reductase
immunoproteasome
in silico
induced structural deformations
induced-fit docking
inhibitors
isoform-selective histone deacetylase inhibitors
isomeric space
ligand-based model
machine learning
main protease
MD binding
MD simulation
metadynamics
methotrexate
molecular docking
molecular dynamics
molecular dynamics (MD) simulation
molecular dynamics simulation
molecular dynamics simulations
molecular modeling
MRP4
multi-modal
multiple-molecule drug
multiprotein inhibiting natural compounds
multiscale
multitargeting
mutants
Mycobacterium tuberculosis
n/a
natural compounds
neurodegenerative disorders
nicotinic acetylcholine receptor
non-covalent inhibitors
noncovalent interactions
oxidative stress
PF-00835231
pharmacophore model
pharmacophore modeling
PK11195
polypharmacology
proteasome
protein docking
protein threading modeling
proteomic signature
RNA expression regulation
SARS-CoV-2
skin aging
SNPs
sodium-glucose co-transporters 2
Src inhibitors
Stone-Wales defects
structural bioinformatics
structural characterization
systems medicine design
tuberculosis
urinary tract infections
uropathogenic bacteria
variants
virtual screening
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Computational Approaches
Record Nr. UNINA-9910557519403321
Tutone Marco  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Data Modeling and Machine Learning with Applications
Statistical Data Modeling and Machine Learning with Applications
Autore Gocheva-Ilieva Snezhana
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (184 p.)
Soggetto topico Information technology industries
Soggetto non controllato artificial neural networks
assessment
banking
brain-computer interface
breast cancer subtyping
CART ensembles and bagging
categorical data
citizen science
classification
classification and regression tree
clustering
CNN-LSTM architectures
consensus models
convexity
cross-validation
dam inflow prediction
damped Newton
data quality
data-adaptive kernel functions
deep forest
EEG motor imagery
ensemble model
feature selection
Gower's interpolation formula
Gower's metric
hedonic prices
housing
hyper-parameter optimization
image data
input predictor selection
kernel clustering
kernel density estimation
long short-term memory
machine learning
mathematical competency
METABRIC dataset
mixed data
multi-category classifier
multi-omics data
multidimensional scaling
multivariate adaptive regression splines
n/a
non-linear optimization
predictive models
quantile regression
real-time motion imagery recognition
similarity
stochastic gradient descent
support vector machine
wavelet transform
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557359003321
Gocheva-Ilieva Snezhana  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui